
PARyOpt Documentation

Balaji Pokuri, Alec Lofquist

Oct 30, 2018

Contents:

1 Installation 1

2 Introduction 3

3 PARyOpt package 5
3.1 Subpackages . 5
3.2 Submodules . 18
3.3 PARyOpt.acquisition_functions module . 18
3.4 PARyOpt.PARyOpt module . 19
3.5 PARyOpt.utils module . 19
3.6 Module contents . 21

4 Examples 23
4.1 Getting Started . 23
4.2 Custom functions for surrogate construction . 26
4.3 Restart from previous state . 28
4.4 Local asynchronous evaluator . 29
4.5 Kriging . 32

5 Indices and tables 35

Python Module Index 37

i

ii

CHAPTER 1

Installation

PARyOpt requires Python 3.5 or above, NumPy, and SciPy for basic functionality. Paramiko is required for cost
functions evaluated on remote machines (HPC clusters). Matplotlib is used for visualization for these examples, but is
not required.

These all will be installed when you do a

pip install paryopt

(if you are on Ubuntu, you may need to do sudo apt-get install python3-pip and use pip3 here in-
stead!)

Or, if you prefer an Anaconda environment:

conda create -n paryopt python=3.5 numpy scipy matplotlib paramiko
activate paryopt

Or, if you are using a manual download:

tar -xvf paryopt-1.0.1.tar.gz
cd paryopt/
python3.5 setup.py install

1

PARyOpt Documentation

2 Chapter 1. Installation

CHAPTER 2

Introduction

We consider a general minimization problem:

min
x

𝑦(x)

Bayesian optimization proceeds through construction of a surrogate cost function 𝑦(x). This surrogate is represented
as a basis function expansion, around each evaluated point(x𝑖, 𝑖 ∈ [1, 𝑁]). This ensures that the surrogate passes
through (interpolates) the evaluated points. In the case of evaluations with noisy data, the surrogate shall pass within 1
standard deviation from the mean at the evaluated points. Analytically, the surrogate 𝑦(x) after N function evaluations
is represented as

𝑦(x) =

𝑁∑︁
𝑖=1

𝑤𝑖𝑘(x,x𝑖)

where 𝑘(x,x𝑖) is a kernel function, i.e., it takes in two arguments, x, x𝑖 and returns a scalar value. This scalar is
representative of how correlated is the function 𝑦(x) at x and x𝑖. The weights 𝑤𝑖 are calculated by solving the system
of 𝑁 linear equations in 𝑤𝑖. In matrix notation, this is represented using a covariance matrix(K):

K �̄� = 𝑦

K𝑖,𝑗 = 𝑘(x𝑖,x𝑗), 𝑖, 𝑗 ∈ [1, 𝑁]

𝑦𝑖 = 𝑦(x𝑖), 𝑖 ∈ [1, 𝑁]

�̄� = {𝑤𝑖}, 𝑖 ∈ [1, 𝑁]

Hence the weights are calculated through the inversion �̄� = K−1 𝑦. Note that the covariance matrix K is a Gram
matrix of a positive definite kernel function, making it symmetric and positive semi-definite. Furthermore, since with
every iteration only a finite number of rows are added to the covariance matrix, efficient inversion is possible through
incremental Cholesky decomposition. The mean and variance of the surrogate are then calculated as:

𝜇(x𝑁+1) = k𝑇K−1𝑦1:𝑁

𝜎2(x𝑁+1) = 𝑘(x𝑁+1,x𝑁+1) − k𝑇 K−1 k

where

k = 𝑘(x1:𝑁 ,x𝑁+1) = [𝑘(x1,x𝑁+1) 𝑘(x2,x𝑁+1) ...𝑘(x𝑁 ,x𝑁+1)]

3

PARyOpt Documentation

At each iteration, the surrogate is updated with new data from the cost function. The locations where the next eval-
uation is done is determined through optimization of an acquisition function. An acquisition function is a means to
estimate the new information content at a location. It uses the mean and variance calculated in the above steps.

Some sample radial kernel functions include:

• squared exponential kernel function : Infinitely differentiable

𝑘(𝑟) = 𝜃0𝑒𝑥𝑝(−𝑟2

𝜃2
)

• Matern class of kernel function :

𝑘𝑀𝑎𝑡𝑒𝑟𝑛(𝑟) =
21−𝜈

Γ(𝜈)
(

√
2𝜈𝑟

𝑙
)𝜈𝐾𝜈(

√
2𝜈𝑟

𝑙
)

where 𝐾𝜈 is the modified Bessel function, 𝜈, 𝑙 are positive constants

• Rational quadratic kernel function:

𝑘𝑅𝑄(𝑟) = (1 +
𝑟2

2𝛼𝑙2
)−𝛼

where 𝑟 = ||x1 − x2||

Some example acquisition functions are:

• Confidence bounds

𝐿𝐶𝐵 = 𝜇− 𝜅𝜎

• Probability of improvement

𝑃𝐼 = cdf(𝛾)

• Expectation of improvement

𝐸𝐼 = 𝑠𝑞𝑟𝑡(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) * (𝛾 * cdf(𝛾) + pdf(𝛾))

where 𝛾 = 𝜇
𝜎 , cdf is cumulative normal distribution function and pdf is normal probability distribution function

4 Chapter 2. Introduction

CHAPTER 3

PARyOpt package

3.1 Subpackages

3.1.1 PARyOpt.evaluators package

Submodules

PARyOpt.evaluators.async module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

class PARyOpt.evaluators.async.AsyncFunctionEvaluator(required_fraction: float = 1.0,
max_pending: int = 0)

Bases: object

Abstract base class for long-running cost functions (e.g. external simulations). Must be subclassed. Subclasses
should fill in start() and check_for_results(). Automatically saves state as jobs are submitted.

5

PARyOpt Documentation

check_for_result(x: <built-in function array>, data: Any)
→ Union[PARyOpt.evaluators.async.ValueNotReady,
PARyOpt.evaluators.async.EvaluationFailed, PARy-
Opt.evaluators.async.EvaluateAgain, float]

Returns the cost function evaluation at x, if the value is available. This method is only called after start.

Parameters

• x – the point to evaluate the cost function at

• data – user data returned by start(x)

Returns an instance of ValueNotReady if such, EvaluationFailed(reason), or the cost function
value at x (float)

evaluate_population(xs: List[<built-in function array>], if_ready_xs: List[<built-in func-
tion array>] = []) → Tuple[List[Tuple[<built-in function array>, float]],
List[<built-in function array>], List[<built-in function array>]]

Evaluates a population of x values, encoded as a list of 1D numpy arrays. Returns a tuple containing three
lists:

• Completed values: [(x1, y1), (x2, y2), . . .]

• Pending values - evaluation is in progress, but not complete: [x1, x2, . . .]

• Failed values - evaluation completed unsuccessfully: [x1, x2, . . .]

The union of completed, failed, and pending is equal to the union of xs and if_ready_xs. The __init__
parameter required_fraction tunes how many completed/pending values are returned.

Parameters

• xs – list of new points to check

• if_ready_xs – List of points to include in the return tuple if they available by the time
we evaluate the minimum required percentage of xs. These points do not count towards
the minimum required completed points.

Returns ([(x, y), . . .] completed, [x, . . .] pending, [x, . . .] failed)

start(x: <built-in function array>)→ Any
Start a cost function evaluation at the given x location. This method may return anything - the data will
be passed on to check_for_result(). The only restriction is that the return value should be pickle-able to
enable restart support.

Parameters x – point to begin evaluation at

Returns user data that will be fed into check_for_result()

class PARyOpt.evaluators.async.EvaluateAgain(reason: str)
Bases: object

Indicates evaluation needs to be done again, due to some reason (for eg., during hardware failures)

class PARyOpt.evaluators.async.EvaluationFailed(reason: str)
Bases: object

Indicates evaluation was not able to complete successfully, with an error value (i.e. an exception).

class PARyOpt.evaluators.async.ValueNotReady
Bases: object

Indicates a function value is not ready yet.

6 Chapter 3. PARyOpt package

PARyOpt Documentation

PARyOpt.evaluators.async_local module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

class PARyOpt.evaluators.async_local.AsyncLocalEvaluator(job_generator:
Callable[[str, <built-
in function ar-
ray>], NoneType],
run_cmd_generator:
Callable[[str, <built-
in function array>],
Union[str, List[Any]]],
parse_result:
Callable[[str, <built-
in function array>],
float], jobs_dir: str =
’/home/docs/checkouts/readthedocs.org/user_builds/paryopt/checkouts/stable/docs/opt_jobs’,
required_fraction=1.0,
max_pending=4)

Bases: PARyOpt.evaluators.async.AsyncFunctionEvaluator

Class for cost functions that evaluated by launching a long-running process on the local machine.

Parameters

• job_generator – callable that sets up the run directory for a given x (by e.g. writing
config files). It will be passed two arguments: the job directory and the point to evaluate at
(x).

• run_cmd_generator – callable that returns the command to run the job. It will
be passed two arguments: the job directory and the point to evaluate at (x). If
run_cmd_generator returns a string, the string will be run by the default shell (typically
/bin/sh) via Popen with shell=True. If run_cmd_generator returns a list, it will be passed to
Popen. In both cases, the CWD is set to the job directory.

• parse_result – callable that returns the cost function evaluated at x. It will be passed
two arguments: the job directory and the point to evaluate a t (x). This will be called after the
command returned by run_cmd_generator has terminated (gracefully or otherwise). If the
process did not terminate successfully or the result is otherwise unavailable, parse_result
should raise any exception. This will signal the optimization routine to not try this point
again.

• jobs_dir – optional base directory to run jobs in - default is $PWD/opt_jobs.

3.1. Subpackages 7

PARyOpt Documentation

• required_fraction – fraction of points which must complete before continuing to the
next iteration see AsyncEvaluator for more info and implementation

• max_pending – maximum simultaneous processes, defaults to multiprocess-
ing.cpu_count() see AsyncEvaluator for implementation

check_for_result(x: <built-in function array>, data: (<class ’str’>, <class
’int’>)) → Union[PARyOpt.evaluators.async.ValueNotReady,
PARyOpt.evaluators.async.EvaluationFailed, PARy-
Opt.evaluators.async.EvaluateAgain, float]

Checks the status of pid, in data, and calls parse_result if the job is done.

Parameters

• x – location of function evaluation

• data – list of directory and pid

Returns either ValueNotReady float or EvaluationFailed()

start(x: <built-in function array>) -> (<class ’str’>, <class ’int’>)
Start a cost function evaluation at the given x location. This method may return anything - the data will
be passed on to check_for_result(). The only restriction is that the return value should be pickle-able to
enable restart support.

Parameters x – point to begin evaluation at

Returns user data that will be fed into check_for_result()

PARyOpt.evaluators.async_parse_result_local module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

8 Chapter 3. PARyOpt package

PARyOpt Documentation

class PARyOpt.evaluators.async_parse_result_local.AsyncLocalParseResultEvaluator(parse_result:
Callable[[str,
<built-
in
func-
tion
ar-
ray>],
float]
=
None,
job_generator:
Callable[[str,
<built-
in
func-
tion
ar-
ray>],
None-
Type]
=
None,
jobs_dir:
str
=
’/home/docs/checkouts/readthedocs.org/user_builds/paryopt/checkouts/stable/docs/opt_jobs’,
wait_time:
float
=
date-
time.timedelta(0,
60),
to-
tal_folders:
int
=
16,
max_pending:
int
=
0,
re-
quired_fraction:
float
=
1.0)

Bases: PARyOpt.evaluators.async.AsyncFunctionEvaluator

Fills files in a set of folders and periodically checks if the external evaluator has finished evaluation. Supports
asynchronous evaluations. Only on a local machine.

Variables

• folder_num – folder into which the location values are written into

3.1. Subpackages 9

PARyOpt Documentation

• job_generator – callable that sets up the run directory for a given x (by e.g. writing
config files). It will be passed two arguments: the job directory and the point to evaluate at
(x).

• jobs_dir – base directory where the jobs are written into

• parse_result – function to parse result from directory , if not specified, it will search
in jobs_dir/folder_<folder_num>/if_parse.txt and y.txt

• total_folders – total number of folders to write into

• wait_time – min time to wait before parsing the results folder

check_for_result(x: <built-in function array>, data: (<class ’str’>, <class ’date-
time.datetime’>)) → Union[PARyOpt.evaluators.async.ValueNotReady,
PARyOpt.evaluators.async.EvaluationFailed, PARy-
Opt.evaluators.async.EvaluateAgain, float]

Function to check if a location has been evaluated or not (ValueNotReady). If it completes, categorize the
result as one of a float , EvaluationFailed or EvaluateAgain

Parameters

• x – location to evaluate

• data – directory

Returns Union[ValueNotReady, EvaluationFailed, EvaluateAgain, float]

start(x: <built-in function array>) -> (<class ’str’>, <class ’datetime.datetime’>)
function to start a cost function evaluation (write to file in this case) given the location of evaluation

Parameters x – location of evaluation

Returns folder name in which it was submitted

PARyOpt.evaluators.async_sbatch module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

10 Chapter 3. PARyOpt package

PARyOpt Documentation

class PARyOpt.evaluators.async_sbatch.AsyncSbatchEvaluator(host: PARy-
Opt.evaluators.connection.Host,
job_generator:
Callable[[str,
<built-in function
array>], NoneType],
job_script: Union[str,
Callable[[str, <built-
in function array>],
str]], lcl_parse_result:
Callable[[str,
str, PARy-
Opt.evaluators.connection.Connection,
<built-in function ar-
ray>], float] = None,
remote_parse_result:
Callable[[str, <built-
in function array>],
float] = None,
lcl_jobs_dir: str =
’/home/docs/checkouts/readthedocs.org/user_builds/paryopt/checkouts/stable/docs/opt_jobs’,
squeue_update_rate:
datetime.timedelta =
datetime.timedelta(0,
30), remote_jobs_dir:
str = ’pary-
opt_jobs’, re-
quired_fraction=1.0,
max_pending=25)

Bases: PARyOpt.evaluators.async.AsyncFunctionEvaluator

Class for cost functions that evaluated by launching a job on a remote machine running the SLURM job sched-
uler.

Parameters

• host – Host object containing the credentials for the server to connect to

• job_generator – callable that sets up the run directory for a given x (by e.g. writing
config files). It will be passed two arguments: the job directory and the point to evaluate at
(x).

• job_script – either a string (for a fixed job script), or a callable that returns the job script
string. In the latter case, job_script will be passed two arguments: the job directory and the
point to evaluate at (x).

• remote_parse_result – callable that returns the cost function evaluated at x. It will
be passed two arguments: the job directory and the point to evaluate at (x). This will be
called after the command returned by run_cmd_generator has terminated (gracefully or oth-
erwise). If the process did not terminate successfully or the result is otherwise unavailable,
parse_result should raise any exception. This will signal the optimization routine to not try
this point again. This function will be executed on the remote host. This requires the remote
host to have a matching version of Python installed and the dill module.

• lcl_parse_result – callable that returns the cost function evaluated at X. It is passed
three arguments: the local job dir, remote job dir, the Connection object to the remote, and
X. It is executed on the local machine. This does not require the remote to have Python
installed.

3.1. Subpackages 11

PARyOpt Documentation

• lcl_jobs_dir – optional base directory to generate jobs in - default is $PWD/opt_jobs.

• remote_jobs_dir – optional base directory to upload jobs to - default is
$HOME/paryopt_jobs.

• squeue_update_rate – minimum time between squeue calls. Lower for better job
latency, higher to be more polite

• required_fraction – fraction of points which must complete before continuing to the
next iteration see AsyncEvaluator for more info and implementation

• max_pending – maximum simultaneous queued jobs, defaults to 25, see AsyncEvaluator
for implementation

check_for_result(x: <built-in function array>, data: (<class ’str’>,
<class ’str’>, <class ’int’>, <class ’datetime.datetime’>))
→ Union[PARyOpt.evaluators.async.ValueNotReady,
PARyOpt.evaluators.async.EvaluateAgain, PARy-
Opt.evaluators.async.EvaluationFailed, float]

checks for result if the jobid is complete and ping time is after update rate

Parameters

• x – location of evaluation

• data – data related to the location. Typically this is directory information, job id and
submit time

Returns one of ValueNotReady, EvaluateAgain, EvaluationFailed or float

squeue()

start(x: <built-in function array>) -> (<class ’str’>, <class ’str’>, <class ’int’>, <class ’date-
time.datetime’>)

Generate job directory on local machine, fill in data related to the job like directory, job id and submit time

PARyOpt.evaluators.async_sbatch.VALUE_FROM_FILE(filename)

PARyOpt.evaluators.connection module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

class PARyOpt.evaluators.connection.Connection
Bases: object

call_on_remote(remote_func, *args, remote_cwd: Union[str, NoneType] = None)
Call a function created on this system on a remote system with args. This is done by pickling it with dill,

12 Chapter 3. PARyOpt package

PARyOpt Documentation

SFTPing it to a file on the remote, executing a Python script on the remote that un-dills the file, calls the
function, dills the result and prints it to stdout. Finally, stdout is un-dilled on the local machine to give the
return value. This requires the remote to have a matching Python version.

Parameters

• remote_func – function to call

• args – any arguments to call the function with

• remote_cwd – directory on the remote to call the script from (must have write access to
this directory)

Returns value returned by f

connect(host: PARyOpt.evaluators.connection.Host)

exec_command(cmd: str, cwd=None, check_exitcode=True, encoding=’utf-8’) -> (<class ’str’>,
<class ’str’>, <class ’int’>)

Executes cmd in a new shell session on the remote host.

Parameters

• cmd – command to execute

• cwd – directory to execute the command in - performed by prepending ‘cd [cwd] && ‘ to
cmd

• check_exitcode – if true, instead of returning the exit code of cmd as part of the
return tuple, verify that the return code is zero. If it is not, an exception is raised with the
contents of stderr.

• encoding – encoding to decode stdout/stderr with. Defaults to utf-8.

Returns if check_exitcode is True, (stdout: str, stderr: str). If it is False, (stdout, stderr, rc: int).
stdout and stderr are decoded according to encoding.

get_dir(remote_dir: str, local_dir: str)→ None
Download directory from remote directory to local directory

get_file(remote_path: str, local_path: str)→ None
Downloads a file from the remote, same as paramiko.SFTPClient.get

mkdirs(remote_dir)→ None
Creates remote_dir recursively as a directory on the remote, creating any necessaries parent directories
along the way. Similar to mkdir -p, except it doesn’t error if the directory already exists.

put_dir(local_path: str, remote_path: str)→ None
Compresses local_path into a .tar.gz archive, uploads it to the remote, extracts it into remote_path, and
finally deletes the temporary tar archive. Assumes the remote has the ‘tar’ utility available.

put_file(local_path: str, remote_path: str)→ None
Uploads a local file to the remote host, same as paramiko.SFTPClient.put

remote_python()→ str
Returns a string that, when invoked as a command on the remote, will execute a Python that:

• Matches the version that this script was invoked with (i.e. matching sys.version_info)

• Has the ‘dill’ module installed

The remote Python is discovered by trial and error using common Python names. The search is performed
once and then cached. If no such Python is available, this will return None.

sftp()→ paramiko.sftp_client.SFTPClient

3.1. Subpackages 13

PARyOpt Documentation

class PARyOpt.evaluators.connection.Host(username, hostname, port=22)
Bases: object

get_interactive(title: str, instructions: str, prompts: List[str])→ List[str]
Handles the ssh ‘interactive’ authentication mode (user answers a series of prompts).

Parameters

• title – title of the window

• instructions – instructions, to be shown before any prompts

• prompts – the list of prompts

Returns the list of responses (in the same order as the prompts)

get_keys()

Returns a list of public/private keys to try authenticating with

get_password()

Returns the password for the host

Module contents

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

class PARyOpt.evaluators.FunctionEvaluator(func: Callable[[<built-in function array>],
float])

Bases: object

The simplest function evaluator - evaluates a Python function for each point.

Parameters func – cost function to evaluate at each x

evaluate_population(xs: List[<built-in function array>], old_xs: List[<built-in function array>]
= []) → Tuple[List[Tuple[<built-in function array>, float]], List[<built-in
function array>], List[<built-in function array>]]

14 Chapter 3. PARyOpt package

PARyOpt Documentation

3.1.2 PARyOpt.kernel package

Submodules

PARyOpt.kernel.kernel_function module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

class PARyOpt.kernel.kernel_function.KernelFunction
Bases: object

Attributes:

Variables

• theta – Kernel parameters. Can be None, a scalar, or a vector. Should be initialized to the
appropriate type/len during initialization.

• theta0 – Scaling factor

derivative(x1: <built-in function array>, x2: <built-in function array>)→ <built-in function array>
Evaluate the derivative of the kernel

Parameters

• x1 – location 1

• x2 – location 2

Returns

eval(x1: <built-in function array>, x2: <built-in function array>)→ float
Evaluate the kernel function

Parameters

• x1 – location 1

• x2 – location 2

Returns

theta = None

theta0 = 1.0

3.1. Subpackages 15

PARyOpt Documentation

PARyOpt.kernel.matern module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

class PARyOpt.kernel.matern.Matern32
Bases: PARyOpt.kernel.kernel_function.KernelFunction

3/2 matern function rbf

derivative(x1: <built-in function array>, x2: <built-in function array>)→ <built-in function array>
Evaluate the derivative of the kernel

Parameters

• x1 – location 1

• x2 – location 2

Returns

eval(x1: <built-in function array>, x2: <built-in function array>)→ float
Evaluate the kernel function

Parameters

• x1 – location 1

• x2 – location 2

Returns

theta = 1.0

class PARyOpt.kernel.matern.Matern52
Bases: PARyOpt.kernel.kernel_function.KernelFunction

5/2 matern function rbf

derivative(x1: <built-in function array>, x2: <built-in function array>)→ <built-in function array>
Evaluate the derivative of the kernel

Parameters

• x1 – location 1

• x2 – location 2

Returns

eval(x1: <built-in function array>, x2: <built-in function array>)→ float
Evaluate the kernel function

16 Chapter 3. PARyOpt package

PARyOpt Documentation

Parameters

• x1 – location 1

• x2 – location 2

Returns

theta = 1.0

PARyOpt.kernel.squared_exponential module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

class PARyOpt.kernel.squared_exponential.SquaredExponential
Bases: PARyOpt.kernel.kernel_function.KernelFunction

Squared exponential rbf

derivative(x1: <built-in function array>, x2: <built-in function array>)→ <built-in function array>
Evaluate the derivative of the kernel

Parameters

• x1 – location 1

• x2 – location 2

Returns

eval(x1: <built-in function array>, x2: <built-in function array>)→ float
Evaluate the kernel function

Parameters

• x1 – location 1

• x2 – location 2

Returns

theta = 1.0

Module contents

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

3.1. Subpackages 17

PARyOpt Documentation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3.2 Submodules

3.3 PARyOpt.acquisition_functions module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

PARyOpt.acquisition_functions.expected_improvement(mean: float, variance: float,
curr_best: float = 0.0, _: float =
1.0)→ float

Expected improvement of objective function ‘A Tutorial on Bayesian Optimization of Expensive Cost Functions,
with Application to Active User Modeling and Hierarchical Reinforcement Learning’

Parameters

• mean – mean of surrogate

• variance – variance of surrogate

• curr_best – current best evaluated point

• kappa – exploration - exploitation tradeoff parameter

Returns expectation of improvement

PARyOpt.acquisition_functions.lower_confidence_bound(mean: float, variance: float,
curr_best: float = 0.0, kappa:
float = 1.0)→ float

lower confidence bound of improvement : used for minimization problems

18 Chapter 3. PARyOpt package

PARyOpt Documentation

Parameters

• mean – mean of surrogate

• variance – variance of surrogate

• curr_best – current best evaluated point

• kappa – exploration - exploitation tradeoff parameter

Returns lower confidence bound

PARyOpt.acquisition_functions.probability_improvement(mean: float, variance: float,
curr_best: float = 0.0, _: float
= 1.0)→ float

Probability of improvement of objective function ‘A Tutorial on Bayesian Optimization of Expensive Cost Func-
tions, with Application to Active User Modeling and Hierarchical Reinforcement Learning’

Parameters

• mean – mean of surrogate

• variance – variance of surrogate

• curr_best – current best evaluated point

• kappa – exploration - exploitation tradeoff parameter

Returns probability of improvement

PARyOpt.acquisition_functions.upper_confidence_bound(mean: float, variance: float,
curr_best: float = 0.0, kappa:
float = 1.0)→ float

upper confidence bound of improvement: used in the case of maximization problems

Parameters

• mean – mean of surrogate

• variance – variance of surrogate

• curr_best – current best evaluated point

• kappa – exploration - exploitation tradeoff parameter

Returns upper confidence bound

3.4 PARyOpt.PARyOpt module

3.5 PARyOpt.utils module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

3.4. PARyOpt.PARyOpt module 19

PARyOpt Documentation

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

PARyOpt.utils.cdf_normal(x: <built-in function array>, mean: <built-in function array> = 0.0,
sigma_sq: <built-in function array> = 1.0)→ float

Cumulative distribution function of standard normal distribution

Parameters

• x – scalar / location

• mean – mean of distribution

• sigma_sq – variance of distribution (sigma^2)

Returns cdf of normal distribution

PARyOpt.utils.distance(x1: <built-in function array>, x2: <built-in function array>)→ float
returns the distance between two query points

Parameters

• x1 – point 1

• x2 – point 2

Returns euclidean distance between the two points

PARyOpt.utils.erf(x)
error function of x: used in calculating cumulative distribution. Unable to import from scipy, so writing our own
function

Parameters x – float

Returns error function of x

PARyOpt.utils.lhs(n: int, samples: int = None, criterion: str = None, iterations: int = None)
Generate a latin-hypercube design

Parameters

• n – The number of factors to generate samples for

• samples – The number of samples to generate for each factor (Default: n)

• criterion – Allowable values are “center” or “c”, “maximin” or “m”, “centermaximin”
or “cm”, and “correlation” or “corr”. If no value given, the design is centermaximin.

• iterations – The number of iterations in the maximin and correlations algorithms (De-
fault: 5).

Return H An n-by-samples design matrix that has been normalized so factor values are uniformly
spaced between zero and one.

Example

A 3-factor design (defaults to 3 samples):

>>> lhs(3)
array([[0.40069325, 0.08118402, 0.69763298],

[0.19524568, 0.41383587, 0.29947106],
[0.85341601, 0.75460699, 0.360024]])

20 Chapter 3. PARyOpt package

PARyOpt Documentation

A 4-factor design with 6 samples:

>>> lhs(4, samples=6)
array([[0.27226812, 0.02811327, 0.62792445, 0.91988196],

[0.76945538, 0.43501682, 0.01107457, 0.09583358],
[0.45702981, 0.76073773, 0.90245401, 0.18773015],
[0.99342115, 0.85814198, 0.16996665, 0.65069309],
[0.63092013, 0.22148567, 0.33616859, 0.36332478],
[0.05276917, 0.5819198 , 0.67194243, 0.78703262]])

A 2-factor design with 5 centered samples:

>>> lhs(2, samples=5, criterion='center')
array([[0.3, 0.5],

[0.7, 0.9],
[0.1, 0.3],
[0.9, 0.1],
[0.5, 0.7]])

A 3-factor design with 4 samples where the minimum distance between all samples has been maximized:

>>> lhs(3, samples=4, criterion='maximin')
array([[0.02642564, 0.55576963, 0.50261649],

[0.51606589, 0.88933259, 0.34040838],
[0.98431735, 0.0380364 , 0.01621717],
[0.40414671, 0.33339132, 0.84845707]])

A 4-factor design with 5 samples where the samples are as uncorrelated as possible (within 10 iterations):

>>> lhs(4, samples=5, criterion='correlate', iterations=10)

PARyOpt.utils.pdf_normal(x: <built-in function array>, mean: <built-in function array> = 0.0,
sigma_sq: float = 1.0)→ float

Probability distribution function of standard normal distribution, returns the pdf of a location from given mean
with variance sigma_sq

Parameters

• x – scalar/location

• mean – mean of distribution

• sigma_sq – variance of distribution (sigma^2)

Returns pdf of normal distribution

3.6 Module contents

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

3.6. Module contents 21

PARyOpt Documentation

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

22 Chapter 3. PARyOpt package

CHAPTER 4

Examples

This provides a demonstration of the exhaustive functionality of PARyOpt. These are very intricately connected to the
examples on BitBucket, so the user is suggested to go through them simultaneously. The examples are structured as
follows:

Table 1: Description of Examples
Example # Description
Example 0
Getting Started

A dive into setting up the optimization routine.

Example 1
Custom functions for surrogate con-
struction

Using the same problem as example 0, the modularity of the framework is
demonstrated. All the functions that can be customized are shown.

Example 2
Restart from previous state

Explains the restart capabilities of the framework and how one can use in
case of (hardware/resource) failure.

Example 3
Local asynchronous evaluator

Asynchronocity is introduced and a local asynchronous implementation of
example 0 is shown. This implementation can be easily extended to an
asynchronous remote evaluator.

Example 4
Kriging

Explains the kriging functionality of the framework and how data can be
assimilated to perform kriging

4.1 Getting Started

This example shows how one gets started with the optimization software. One is expected to see through exam-
ple_0.py for a better understanding.

Just like any optimization, we should have information about the following:

1. dimensionality of the problem – n_dim

2. cost function that has to be minimized – function

3. bounds on the variables – l_bound, u_bound

23

PARyOpt Documentation

Some more parameters for Bayesian Optimization

4. number of initial evaluations for constructing the prior –n_init

5. type of kernel function – kern_function

6. number of evaluations per iteration – n_opt

7. platform of evaluation - local computer / remote computer

8. parallel / serial evaluations – cost_function

9. asynchronocity of evaluations – cost_function

10. acquisition function (list) – acq_func

• parallelization of acquisition function – kappa_strategy

The kappa_strategy defines exploration vs exploitation of the optimizer. Those with a large kappa value will
explore and a small kappa value will exploit.

In this example, we shall solve a simple parabolic cost function, on a local machine with no parallelization. The
evaluations will, therefore, be fully synchronous. As part of the example, we shall do an exploration dominated search
in the optimization. The parameters that will be used are as follows:

from PARyOpt.evaluators import FunctionEvaluator
import numpy as np
from PARyOpt import BayesOpt

n_dim = 1
l_bound = np.asarray([-12.])
u_bound = np.asarray([12.])

n_init = 2
kern_function = 'sqr_exp' # squared exponential
acq_func = 'LCB' # lower confidence bound
def my_cost_function(x: np.array) -> float:

y = np.sum((x-2.5) ** 2 + 5)
return float(y)

instantiate an evaluator that evaluates serially on the local machine
evaluator = FunctionEvaluator(my_cost_function)
def my_kappa(curr_iter: int) -> float:

return 1000.0 # large value for exploration

4.1.1 Initialization

Having defined these parameters, we shall now initialize the optimizer:

b_opt = BayesOpt(cost_function=evaluator,
l_bound=l_bound, u_bound=u_bound, n_dim=n_dim,
n_init=2,
kern_function='sqr_exp',
acq_func='LCB',
n_opt=1, # default setting
kappa_strategy=my_kappa,
if_restart=False)

The stage is now set for optimization to be performed. Since this package does not provide any standard termination
criteria, the user is expected to design a termination based on the nature of the problem. In this example, we shall look
at a very simple termination criterion of number of iterations.

24 Chapter 4. Examples

PARyOpt Documentation

max_iter = 10

4.1.2 Update

The user shall manually update the optimization every iteration. This provides ways to post-process user required
metrics every iteration, as well as do a regular hyper-parameter optimization for optimized surrogate.

for curr_iter in range(max_iter):
b_opt.update_iter()

4.1.3 Hyper parameter optimization

An implementation of the standard hyper parameter optimization is done in
estimate_best_kernel_parameters(). This minimizes a maximum likelihood estimate of the con-
structed surrogate and eventually sets the optimal kernel length scale. It can be invoked by calling:

theta_min = 0.01
theta_max = 50.
b_opt.estimate_best_kernel_parameters(theta_bounds=[[theta_min, theta_max]])

Hyper parameter optimization need not be performed every iteration as the surrogate may not change much with the
addition of a single data point. Hence its call can be periodic based on the iteration number.

4.1.4 Surrogate query

Having constructed the surrogate, one may need to query it for several purposes, including visualization, post-
processing and termination criteria. This functionality is provided through the evaluate_surrogate_at()
function. It returns the value of the mean and variance of the surrogate at the queried location.

location_to_query = np.asarray([0.5])
mean, variance = b_opt.evaluate_surrogate_at(location_to_query)

4.1.5 Logging

PARyOpt uses the python logging module for logging. The user has to instantiate the logger in the main code. If
the logger is not initiated, the logs will be streamed to stdout. An example of using the logger is also in the above
example:

import logging, time

logger = logging.getLogger()
logger.setLevel(logging.INFO) # either NOTSET, INFO, DEBUG, WARNING, ERROR, CRITICAL
→˓-- different levels of log
log_file_name = 'example0_{}.log'.format(time.strftime("%Y.%m.%d-%H%M%S"))
fh = logging.FileHandler(log_file_name, mode='a')
logging format
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
logger.addHandler(fh)

4.1. Getting Started 25

https://docs.python.org/3/library/logging.html

PARyOpt Documentation

4.1.6 Saving data

The framework provides multiple ways to save data, particularly with ready methods to export in .csv format. It can
be done be calling:

b_opt.export_csv('my_data.csv')

Alternately, data can be custom exported, as get methods exist to get the population and the respective function
values.

total_population, function_values = b_opt.get_total_population()

The next example shows how to custom change the various functions used in the optimization method.

4.2 Custom functions for surrogate construction

This example discusses the modularity provided by the framework to change various optimizer and surrogate related
methods. More specifically, we look at changing the following accessory functions:

• Initialization strategy

• Kernel functions (Class)

• Acquisition functions

• Acquisition optimizer

Through this tutorial, we shall not solve any new problem. However, explanations will be provided to how can one
add custom definitions to these standard methods. We shall use an external implementation of the standard methods
for the user to easily compare with Getting Started. While the example shows the usage of all of these at once, the
user is encouraged to understand the effect of changing each of these accessory functions separately:

4.2.1 Initialization strategy

Several situations arise when the user has to specify his own initialization strategies. Some of these include:

• Constraints, such as equality, inequality and PDE based constraints. In such situations, all locations determined
by the upper and lower bounds may not be feasible. PARyOpt requires all the initial evaluation points to be
successful evaluations, hence a general latin hypercube sampling may not work in all cases.

• Biased sampling of search domain. There could be situations where the user knows strategic locations and thus
can help PARyOpt to sample in those locations right from the beginning

• User defined sampling strategy. The user may want a completely different sampling strategy which has a
better coverage of the domain for that specific optimization problem.

In order to specify custom initialization strategy, the user should define a function with the following signature:

def my_init_strategy(n_dim: int, n_init: int, l_bound: np.array, u_bound: np.array) ->
→˓ List[np.array]

and then pass it during initialization to the parameter init_strategy=my_init_strategy.

26 Chapter 4. Examples

PARyOpt Documentation

4.2.2 Kernel functions (Class)

Kernel function embeds most of the information about the continuity of the underlying function. Thus, it is one
of the critical parameters to be selected by the user. For example, Matern class of kernel functions have only finite
differentiability while the squared exponential kernel function is infinitely differentiable. Some other situations where
the user may want to change the kernel function are :

• Underlying function continuity and differentiability, as discussed above.

• Prior information about periodicity of the underlying function. In such situations, periodicity can be em-
bedded into the kernel function. This can drastically improve the number of function evaluations. One such
example of a periodic kernel function is:

𝑘𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐(𝑥1, 𝑥2) = 𝜃0𝑒𝑥𝑝(−2𝑠𝑖𝑛(
𝜋

𝑝

||𝑥1 − 𝑥2||
𝑙

)2)

where 𝑝 is the periodicity interval and 𝑙 is the length scale of the kernel.

• Anisotropic kernels may be used when the function behaviour is different across different optimization param-
eters. For example, if the function varies logarithmically in one parameter and linearly in another parameter

To specify custom kernel functions, the user has to derive the base kernel class. An example to specify the standard
Matern 3/2 function by the user is as follows:

class MyKernelFunction(KernelFunction):
"""
user customized kernel function
"""

theta = 1.0

def eval(self, x1: np.array, x2: np.array) -> float:
"""
actual kernel function
:param x1:
:param x2:
:return:
"""
x1 = np.divide(x1, self.theta)
x2 = np.divide(x2, self.theta)
dist = utils.distance(x1, x2)
rval = np.sqrt(3.0) * dist
return self.theta0 * (1+rval) * np.exp(-rval)

def derivative(self, x1: np.array, x2: np.array) -> np.array:
"""
derivative of kernel function
currently not useful, so we will not implement anything here
:param x1:
:param x2:
:return:
"""
pass

This derived class requires defining the eval() and derivative() methods of the class. The parameter theta
should contain all the hyper-parameters, for ex. length scale, related to the supplied kernel. This will be used by PARy-
Opt during hyper-parameter optimization. This kernel class can be passed to the constructor through the parameter
kern_function=MyKernelFunction().

4.2. Custom functions for surrogate construction 27

PARyOpt Documentation

4.2.3 Acquisition functions

Acquisition function define informative regions of the surrogate. Since the software is designed for minimiza-
tion, areas of high information should have small acquisition values. In normal circumstances, the user should
not need to change this. However, if the user wants implementing safety constraints and biased informative-
ness, it can be be done by passing a user defined function, with the following signature, to the constructor as
acq_func=my_acquisition_function.

def my_acquisition_function(mean: float, variance: float, curr_best: float = 0.,
→˓kappa: float = 1.) -> float:

4.2.4 Acquisition optimizer

Bayesian optimization proceeds by evaluating locations with maximum information content. Hence, it requires finding
the optimum (minimum in PARyOpt) of the acquisition function (cheap to evaluate). While the core software comes
with a standard Powell algorithm, the user may quite often want to change this for a better global optimum. Some
of the reasons include:

• Dimensionality of optimization could impose restrictions on the type of optimizer used

• Heuristic optimization can be an alternative for multi-modal functions. Since evaluating the acquisition is fast,
these optimizers will also be efficient.

• Robust in-house optimizers may be available with research groups tailored for specific problems.

The process of adding user-defined acquisition optimizer is very similar to defining custom acquisition function. The
function signature is :

def my_acq_optimizer(func: Callable[[np.array], float], x0: np.array, l_bound: np.
→˓array, u_bound: np.array) -> np.array:

which is passed to the constructor as acq_func_optimizer=my_acq_optimizer.

4.3 Restart from previous state

This example shows how the user can deal with optimization failures, either due to hardware failure or due to wrong
selection of accessory functions. This will also be useful in cases of changing optimization platform but resuming the
same optimization task.

In order to create an optimization state, we shall first run a standard optimization problem for a certain number of
iterations. This can be done either by running example 0(Getting Started), or by re-doing the whole procedure. For
the benefit of the user, we shall take the latter way.

4.3.1 Restart

In example 1, we have seen that our custom initialization is not the best compared to the default latin hypercube
sampling. In fact, such an example provides the best motivation for a restart. Hence, in this example, we provide
a custom initialization method, the same as in example 1 (Custom functions for surrogate construction). Once the
optimization is done for 10 iterations, we shall create another instance of BayesOpt that starts from this existing
optimization state.

28 Chapter 4. Examples

PARyOpt Documentation

restarted_bo = BayesOpt(cost_function=evaluator,
l_bound=l_bound, u_bound=u_bound, n_dim=n_dim,
n_init=2,
kern_function='sqr_exp',
acq_func='LCB',
kappa_strategy=my_kappa,
if_restart=True, restart_filename='opt_state.dat')

Note that the restarted optimization need not have the same accessory functions, like kernel, acquisition and kappa
strategy. By enabling if_restart and providing the restart_filename, the framework re-creates the opti-
mization state from which the user can continue the optimization, for example,

restarted_bo.update_iter(5)

will update 5 iterations at once. This API helps to reduce redundant loops in the user code.

4.3.2 Intra-iteration restart

It has to be noted here that the evaluator also has an inbuilt check-pointing per iteration, so that hard interrupts such
as the KeyboardInterrupt can also be handled for restart. The user need not do any extra changes to enable this
intra-iteration restart functionality.

4.4 Local asynchronous evaluator

In this example, we shall see how to use the local async evaluator. This is particularly useful when the cost function
takes a long time to evaluate, and sometimes with uncertain evaluation times. In such situations, a better way to
parallelize evaluations is to run as individual jobs on the evaluation platform (local machine) and keep track of the
completion of the jobs through the process id in the process table. This approach naturally supports asynchronous
bayesian update, i.e., update the iteration without completing all the jobs per iteration. The un-assimilated jobs will be
used for the update in the subsequent iterations.

To achieve this, the framework creates individual job directories for each cost function evaluation. It also provides an
interface for the user to set up these directories for a self-contained evaluation. The cost function needs to write out a
file with the result(cost value) which will later be parsed by the framework upon execution completion. For this, the
user needs to provide functions that

1. generate necessary files in the folder for function evaluation

2. provide the command for executing the cost function, and

3. parse the result file generated by the cost function

In the rest of the document, we shall see how to set up a sample cost function, a folder generator, run command and
result parser. Once again, we shall use the same parabolic cost function for easy understanding, but in 2 dimensions.

4.4.1 Out-of-script cost function

The first step to performing out-of-script evaluation is to re-define the cost function. While a generic cost function in
an optimization framework is like a python function that returns the cost function value, out-of-script functions need
to be defined differently. Firstly, they do not have any defined arguments and secondly, such out-of-script cost function
also cannot directly pass the function value to the optimization framework. While there are several ways to overcome
these difficulties, this framework requires the following template to be followed:

• Input: the cost function can either take inline arguments or read from file

4.4. Local asynchronous evaluator 29

PARyOpt Documentation

• Output: the cost function should write to a standard file

For example, the following code evaluates the parabola in 2 dimensions and writes to file result.txt. Location of
evaluation are passed as inline arguments.

import sys
import numpy as np
import time
import examples.examples_all_functions as exf

read the command line arguments into an array
xs = np.asarray([float(x) for x in sys.argv[1:]])

evaluate the cost, i.e. the parabola
cost = exf.parabolic_cost_function(x=xs)

In order to demonstrate uncertain evaluation times, we shall use a random sleep in
→˓each cost function.
In this case, each function evaluation can take between 0-10 sec
time.sleep(np.random.random() * 10.)

Write into a result file. Note that this script is evaluated in its respective
→˓folder and so
the result.txt file will be in the generated folder and not the home directory of
→˓running example4.py
with open('result.txt', 'w') as f:

f.write(str(cost) + '\n')

4.4.2 Folder generator

Many common simulations require not just the location of evaluation but also several other systems to be in place for
proper working. For example, many finite element simulations require a geometry mesh file that represent the domain
of simulation. The optimizer calls this function, job_generator() with two arguments – the folder of evaluation
(more to come on this) and the location x at which the cost function is executed.

def folder_generator(directory, x) -> None:
"""
prepares a given folder for performing the simulations. The cost function (out-of-

→˓script) will be executed
in this directory for location x. Typically this involves writing a config file,

→˓generating/copying meshes and

In our example, we are running a simple case and so does not require any files to
→˓be filled. We shall pass the

location of cost function as a command line argument
"""
with open(os.path.join(directory, 'config.txt'), 'w') as f:

pass # write file
pass

4.4.3 Run command

Just like a folder of files for execution, the user may need to provide command line arguments to the cost function
during execution. To achieve this, the optimizer calls the function run_cmd_generator() with the folder of

30 Chapter 4. Examples

PARyOpt Documentation

evaluation and location x at which the cost function has to be evaluated. Thus it can allow change of run-time
arguments based on the evaluation point.

def run_cmd(directory, x) -> List[Any]:
"""
Command to run on local machine to get the value of cost function at x, in

→˓directory.
In this example, we shall run the script example3_evaluator.py with the location

→˓as an argument.
"""
eval_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'example3_

→˓evaluator.py')
return [sys.executable, eval_path] + list(x[:])

4.4.4 Result parser

Once the cost function writes the cost value into a file, the result parser is supposed to read and return that cost value
to the optimizer. Some local post processing operations can go into this function. Care should be taken to return only
float values, otherwise it can lead to Type inconsistencies in the optimization routine. The function signature is the
same as that for run_cmd_generator() and job_generator()

def result_parser(directory, x) -> float:
"""
Parses the result from a file and returns the cost function.
The file is written be the actual cost function. One can also do post processing

→˓in this function and return the
subsequent value. Based on the construct of our cost function example3_evaluator.

→˓py, the generated result.txt
will be in this 'directory'
"""
with open(os.path.join(directory, 'result.txt'), 'r') as f:

return float(f.readline())

4.4.5 Asynchronous optimization

Once the above functions are created, the only new procedure to use asynchronous evaluations is setting up the evalu-
ator. This requires passing in the the three functions, namely, job_generator(), run_cmd_generator()
and parse_result(). Along with these, it is optional to pass in the location of function evaluations. The
evaluator creates separate folders in these directory (relative path) for each cost function evaluation. Each cost
function call is assigned a (randomly named) directory within this specified jobs_dir where the run_cmd (from
run_cmd_generator()) is called.

evaluator = AsyncLocalEvaluator(job_generator=folder_generator,
run_cmd_generator=run_cmd,
parse_result=result_parser,
required_fraction=0.5, jobs_dir=os.path.join(os.

→˓getcwd(), 'temp/opt_jobs'))

Since we are using multiple optima per iteration, we can take advantage of it deploy simultaneous exploration and ex-
ploitation in the acquisition function. For example, the following code creates a list of two functions – one exploratory
(kappa = 1000) and another exploitatory (kappa = 0.1). This list is then passed to the optimizer, like in the previous
examples.

4.4. Local asynchronous evaluator 31

PARyOpt Documentation

n_opt = 2
my_kappa_funcs = []
my_kappa_funcs.append(lambda iter_num: 1000) # exploration
my_kappa_funcs.append(lambda iter_num: 0.1) # exploitation

One can get more crafty in designing these kappa strategies and create a so-called annealing kappa, one that starts with
a large value and eventually reduces to a small value, at different rates.

for j in range(n_opt):
my_kappa_funcs.append(lambda curr_iter_num, freq=10.*(j*j+2), t_const=0.8/(1. +

→˓j):
user_defined_kappa(curr_iter_num, freq=freq, t_const=t_

→˓const))

The remaining part of the optimization remains the same, except for the initialization of BayesOpt object.

b_opt = BayesOpt(cost_function=evaluator,
n_dim=n_dim, n_opt=n_opt, n_init=2,
u_bound=u_bound, l_bound=l_bound,
kern_function='matern_52',
acq_func='LCB', kappa_strategy=my_kappa_funcs,
if_restart=False)

for curr_iter in range(iter_max):
b_opt.update_iter()
if not curr_iter % 2:

b_opt.estimate_best_kernel_parameters(theta_bounds=[[0.01, 10]])
exf.visualize_fit(b_opt)

4.5 Kriging

Kriging or Gaussian process regression is a method of interpolation for which the interpolated values are modeled by
a Gaussian process governed by prior covariances. In this example, we show how PARyOpt can be used to generate
response surfaces using available data. As with the previous examples, we shall use the standard parabola as the
underlying function to be approximated. There are several ways to use PARyOpt for Kriging, one of which is shown
here. This is possibly the easiest and cleanest way to perform Kriging using PARyOpt.

Data generation: Since the underlying function is known, we shall generate data by invoking this function at some
random locations within the bounds and storing them in an external file. This is achieved through the following
snippet:

def create_data_csv(function: Callable, filename: str, l_bound: np.array, u_bound: np.
→˓array) -> None:
generate some random locations -- 7
normalized_population = np.random.ranf((7,))
real_population = l_bound + normalized_population * (u_bound - l_bound)
real_population = [np.asarray([p]) for p in real_population]
evaluate the values
real_functions = [float(function(p)) for p in real_population]

write into file
with open(filename, 'w') as f:

writer = csv.writer(f, delimiter=',')
writer.writerow('x y')

(continues on next page)

32 Chapter 4. Examples

PARyOpt Documentation

(continued from previous page)

for x, y in zip(real_population, real_functions):
writer.writerow(list(x) + [y])

Data assimilation : PARyOpt provides an add_point() to add external data manually. The user has to supply the
x location and any available y values to this method to add data to the BayesOpt instance. An example usage of
add_point() using the above generated data can be:

def load_from_csv(b_opt: BayesOpt, filename: str) -> BayesOpt:
"""
load data from csv file and add to PARyOpt
"""
with open(filename, 'r') as csvfile:

csv_file_lines = csv.reader(csvfile, delimiter=',')
for row_num, row in enumerate(csv_file_lines):

if row_num == 0:
skipping the header
pass

else:
b_opt.add_point(x=np.asarray([float(row[0])]), y=float(row[-1]),

if_check_nearness=True)
b_opt.update_surrogate()

return b_opt

Note that the user has to manually invoke update_surrogate(). This is currently for efficiency purposes and
hope to be replaced in the upcoming versions.

Finally, since the user wants to add data manually and does not want the standard initialization required for bayesian
optimization, we provide a switch do_init to turn off the initialization. Since there is no cost function to be
optimized, the evaluator should be passed in an empty function for evaluation.

dummy evaluators:
evaluator = FunctionEvaluator(lambda x: 0.0)

krig = BayesOpt(cost_function=evaluator,
l_bound=l_bound, u_bound=u_bound, n_dim=1,
n_init=0, do_init=False, # ensures that initialization is not

→˓done.
kern_function='sqr_exp',
acq_func='LCB',
kappa_strategy=lambda curr_iter: 1000,
if_restart=False)

krig = load_from_csv(krig, data_filename)
krig.estimate_best_kernel_parameters(theta_bounds=[[0.001, 10.0]])

Note that since we are not providing any actual cost function here, update_iter() does nothing useful. In case
the user is looking for an instantaneous Kriging model, i.e., creating a Kriging surface and updating it, the actual cost
function should be provided. Just like the previous examples, one may use evaluator from example-3_ and do
Kriging similar to optimization.

Now that the surrogate is created and hyper-parameters optimized, one can start querying it using
evaluate_surrogate_at()

location = np.array([1.0])
mean, variance = krig.evaluate_surrogate_at(location)

PARyOpt (pronounced pur-yopt, with a hard y) is a modular asynchronous Bayesian optimization package that enables

4.5. Kriging 33

PARyOpt Documentation

remote function evaluation.

It is written to solve optimization problems where the cost function is very expensive to evaluate (on the order of
hours), and where cost functions must be evaluated on remote machines (HPC clusters).

34 Chapter 4. Examples

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

35

PARyOpt Documentation

36 Chapter 5. Indices and tables

Python Module Index

p
PARyOpt, 21
PARyOpt.acquisition_functions, 18
PARyOpt.evaluators, 14
PARyOpt.evaluators.async, 5
PARyOpt.evaluators.async_local, 7
PARyOpt.evaluators.async_parse_result_local,

8
PARyOpt.evaluators.async_sbatch, 10
PARyOpt.evaluators.connection, 12
PARyOpt.kernel, 17
PARyOpt.kernel.kernel_function, 15
PARyOpt.kernel.matern, 16
PARyOpt.kernel.squared_exponential, 17
PARyOpt.utils, 19

37

PARyOpt Documentation

38 Python Module Index

Index

A
AsyncFunctionEvaluator (class in PARy-

Opt.evaluators.async), 5
AsyncLocalEvaluator (class in PARy-

Opt.evaluators.async_local), 7
AsyncLocalParseResultEvaluator (class in PARy-

Opt.evaluators.async_parse_result_local),
8

AsyncSbatchEvaluator (class in PARy-
Opt.evaluators.async_sbatch), 10

C
call_on_remote() (PARy-

Opt.evaluators.connection.Connection
method), 12

cdf_normal() (in module PARyOpt.utils), 20
check_for_result() (PARy-

Opt.evaluators.async.AsyncFunctionEvaluator
method), 5

check_for_result() (PARy-
Opt.evaluators.async_local.AsyncLocalEvaluator
method), 8

check_for_result() (PARy-
Opt.evaluators.async_parse_result_local.AsyncLocalParseResultEvaluator
method), 10

check_for_result() (PARy-
Opt.evaluators.async_sbatch.AsyncSbatchEvaluator
method), 12

connect() (PARyOpt.evaluators.connection.Connection
method), 13

Connection (class in PARyOpt.evaluators.connection), 12

D
derivative() (PARyOpt.kernel.kernel_function.KernelFunction

method), 15
derivative() (PARyOpt.kernel.matern.Matern32 method),

16
derivative() (PARyOpt.kernel.matern.Matern52 method),

16

derivative() (PARyOpt.kernel.squared_exponential.SquaredExponential
method), 17

distance() (in module PARyOpt.utils), 20

E
erf() (in module PARyOpt.utils), 20
eval() (PARyOpt.kernel.kernel_function.KernelFunction

method), 15
eval() (PARyOpt.kernel.matern.Matern32 method), 16
eval() (PARyOpt.kernel.matern.Matern52 method), 16
eval() (PARyOpt.kernel.squared_exponential.SquaredExponential

method), 17
evaluate_population() (PARy-

Opt.evaluators.async.AsyncFunctionEvaluator
method), 6

evaluate_population() (PARy-
Opt.evaluators.FunctionEvaluator method),
14

EvaluateAgain (class in PARyOpt.evaluators.async), 6
EvaluationFailed (class in PARyOpt.evaluators.async), 6
exec_command() (PARy-

Opt.evaluators.connection.Connection
method), 13

expected_improvement() (in module PARy-
Opt.acquisition_functions), 18

F
FunctionEvaluator (class in PARyOpt.evaluators), 14

G
get_dir() (PARyOpt.evaluators.connection.Connection

method), 13
get_file() (PARyOpt.evaluators.connection.Connection

method), 13
get_interactive() (PARyOpt.evaluators.connection.Host

method), 14
get_keys() (PARyOpt.evaluators.connection.Host

method), 14
get_password() (PARyOpt.evaluators.connection.Host

method), 14

39

PARyOpt Documentation

H
Host (class in PARyOpt.evaluators.connection), 13

K
KernelFunction (class in PARy-

Opt.kernel.kernel_function), 15

L
lhs() (in module PARyOpt.utils), 20
lower_confidence_bound() (in module PARy-

Opt.acquisition_functions), 18

M
Matern32 (class in PARyOpt.kernel.matern), 16
Matern52 (class in PARyOpt.kernel.matern), 16
mkdirs() (PARyOpt.evaluators.connection.Connection

method), 13

P
PARyOpt (module), 21
PARyOpt.acquisition_functions (module), 18
PARyOpt.evaluators (module), 14
PARyOpt.evaluators.async (module), 5
PARyOpt.evaluators.async_local (module), 7
PARyOpt.evaluators.async_parse_result_local (module),

8
PARyOpt.evaluators.async_sbatch (module), 10
PARyOpt.evaluators.connection (module), 12
PARyOpt.kernel (module), 17
PARyOpt.kernel.kernel_function (module), 15
PARyOpt.kernel.matern (module), 16
PARyOpt.kernel.squared_exponential (module), 17
PARyOpt.utils (module), 19
pdf_normal() (in module PARyOpt.utils), 21
probability_improvement() (in module PARy-

Opt.acquisition_functions), 19
put_dir() (PARyOpt.evaluators.connection.Connection

method), 13
put_file() (PARyOpt.evaluators.connection.Connection

method), 13

R
remote_python() (PARy-

Opt.evaluators.connection.Connection
method), 13

S
sftp() (PARyOpt.evaluators.connection.Connection

method), 13
SquaredExponential (class in PARy-

Opt.kernel.squared_exponential), 17
squeue() (PARyOpt.evaluators.async_sbatch.AsyncSbatchEvaluator

method), 12

start() (PARyOpt.evaluators.async.AsyncFunctionEvaluator
method), 6

start() (PARyOpt.evaluators.async_local.AsyncLocalEvaluator
method), 8

start() (PARyOpt.evaluators.async_parse_result_local.AsyncLocalParseResultEvaluator
method), 10

start() (PARyOpt.evaluators.async_sbatch.AsyncSbatchEvaluator
method), 12

T
theta (PARyOpt.kernel.kernel_function.KernelFunction

attribute), 15
theta (PARyOpt.kernel.matern.Matern32 attribute), 16
theta (PARyOpt.kernel.matern.Matern52 attribute), 17
theta (PARyOpt.kernel.squared_exponential.SquaredExponential

attribute), 17
theta0 (PARyOpt.kernel.kernel_function.KernelFunction

attribute), 15

U
upper_confidence_bound() (in module PARy-

Opt.acquisition_functions), 19

V
VALUE_FROM_FILE() (in module PARy-

Opt.evaluators.async_sbatch), 12
ValueNotReady (class in PARyOpt.evaluators.async), 6

40 Index

	Installation
	Introduction
	PARyOpt package
	Subpackages
	Submodules
	PARyOpt.acquisition_functions module
	PARyOpt.PARyOpt module
	PARyOpt.utils module
	Module contents

	Examples
	Getting Started
	Custom functions for surrogate construction
	Restart from previous state
	Local asynchronous evaluator
	Kriging

	Indices and tables
	Python Module Index

