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PARyOpt (pronounced pur-yopt, with a hard y) is a modular asynchronous Bayesian optimization package that enables
remote function evaluation.

It is written to solve optimization problems where the cost function is very expensive to evaluate
(on the order of hours), and where cost functions must be evaluated on remote machines (HPC clusters).
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Installation

PARyOpt requires Python 3.5 or above, NumPy, and SciPy for basic functionality.
Paramiko is required for cost functions evaluated on remote machines
(HPC clusters). Matplotlib is used for visualization for these examples,
but is not required.

These all will be installed when you do a

pip install paryopt






	(if you are on Ubuntu, you may need to do sudo apt-get install python3-pip

	and use pip3 here instead!)





Or, if you prefer an Anaconda environment:

conda create -n paryopt python=3.5 numpy scipy matplotlib paramiko
activate paryopt





Or, if you are using a manual download:

tar -xvf paryopt-1.0.1.tar.gz
cd paryopt/
python3.5 setup.py install









          

      

      

    

  

    
      
          
            
  
Introduction

We consider a general minimization problem:


\[\min_\mathbf{x} \, y(\mathbf{x})\]

Bayesian optimization proceeds through construction of a surrogate cost
function \(\tilde{y}(\mathbf{x})\). This surrogate is represented as a basis
function expansion, around each evaluated point(\(\mathbf{x}_i, i \in [1,N]\)).
This ensures that the surrogate passes through (interpolates) the evaluated
points. In the case of evaluations with noisy data, the surrogate shall pass
within 1 standard deviation from the mean at the evaluated points.
Analytically, the surrogate \(\tilde{y}(\mathbf{x})\) after N function
evaluations is represented as


\[\tilde{y}(\mathbf{x}) = \sum_{i=1}^N w_i k(\mathbf{x}, \mathbf{x}_i)\]

where \(k(\mathbf{x}, \mathbf{x}_i)\) is a kernel function, i.e., it takes in two arguments,
\(\mathbf{x}, \, \mathbf{x}_i\) and returns a scalar value. This scalar is representative of how correlated is
the function \(y(\mathbf{x})\) at \(\mathbf{x}\) and \(\mathbf{x}_i\). The weights \(w_i\) are
calculated by solving the system of \(N\) linear equations in \(w_i\). In matrix notation, this is represented
using a covariance matrix(\(\mathbf{K}\)):


\[\begin{split}\mathbf{K}\, \bar{w} & = y \\
\mathbf{K}_{i,j} & = k(\mathbf{x}_i, \mathbf{x}_j) , \, \, i,j\in[1,N] \\
y_i & = y(\mathbf{x}_i) , \, \,i\in[1,N] \\
\bar{w} & = \{w_i\}, \, \,i\in[1,N]\end{split}\]

Hence the weights are calculated through the inversion \(\bar{w} = \mathbf{K}^{-1}\,y\). Note that the covariance
matrix \(\mathbf{K}\) is a Gram matrix of a positive definite kernel function, making it symmetric and positive
semi-definite. Furthermore, since with every iteration only a finite number of rows are added to the covariance matrix,
efficient inversion is possible through incremental Cholesky decomposition. The mean and variance of the surrogate
are then calculated as:


\[\begin{split}\mu(\mathbf{x}_{N+1}) & = \mathbf{k}^T \mathbf{K}^{-1} y_{1:N} \\
\sigma^2(\mathbf{x}_{N+1}) & = k(\mathbf{x}_{N+1}, \mathbf{x}_{N+1}) - \mathbf{k}^T\,\mathbf{K}^{-1}\,\mathbf{k}\end{split}\]

where


\[\mathbf{k} = k(\mathbf{x}_{1:N}, \mathbf{x}_{N+1}) = [k(\mathbf{x}_1,\mathbf{x}_{N+1})\, k(\mathbf{x}_2,\mathbf{x}_{N+1})\, . . .            k(\mathbf{x}_N,\mathbf{x}_{N+1})]\]

At each iteration, the surrogate is updated with new data from the cost function. The locations where the next
evaluation is done is determined through optimization of an acquisition function. An acquisition function is a means
to estimate the new information content at a location. It uses the mean and variance calculated in the above steps.

Some sample radial kernel functions include:


	squared exponential kernel function : Infinitely differentiable





\[k(r) = \theta_0 exp(- \frac{r^2}{\theta^2})\]


	Matern class of kernel function :





\[k_{Matern}(r) = \frac{2^{1-\nu}}{\Gamma(\nu)}(\frac{\sqrt{2\nu}r}{l})^\nu K_\nu(\frac{\sqrt{2\nu}r}{l})\]

where \(K_\nu\) is the modified Bessel function, \(\nu,l\) are positive constants


	Rational quadratic kernel function:





\[k_{RQ}(r) = (1 + \frac{r^2}{2\alpha l^2})^{-\alpha}\]

where \(r = ||\mathbf{x}_1 - \mathbf{x}_2||\)

Some example acquisition functions are:


	Confidence bounds





\[LCB = \mu - \kappa \sigma\]


	Probability of improvement





\[PI = \mathbf{cdf}(\gamma)\]


	Expectation of improvement





\[EI = sqrt(variance) * (\gamma * \mathbf{cdf}(\gamma) + \mathbf{pdf}(\gamma))\]

where \(\gamma = \frac{\mu}{\sigma}\), \(\mathbf{cdf}\) is cumulative normal distribution function and
\(\mathbf{pdf}\) is normal probability distribution function
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Submodules




PARyOpt.acquisition_functions module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.


	
PARyOpt.acquisition_functions.expected_improvement(mean: float, variance: float, curr_best: float = 0.0, _: float = 1.0) → float

	Expected improvement of objective function     ‘A Tutorial on Bayesian Optimization of Expensive Cost Functions,     with Application to Active User Modeling and Hierarchical Reinforcement Learning’


	Parameters

	
	mean – mean of surrogate


	variance – variance of surrogate


	curr_best – current best evaluated point


	kappa – exploration - exploitation tradeoff parameter






	Returns

	expectation of improvement










	
PARyOpt.acquisition_functions.lower_confidence_bound(mean: float, variance: float, curr_best: float = 0.0, kappa: float = 1.0) → float

	lower confidence bound of improvement : used for minimization problems


	Parameters

	
	mean – mean of surrogate


	variance – variance of surrogate


	curr_best – current best evaluated point


	kappa – exploration - exploitation tradeoff parameter






	Returns

	lower confidence bound










	
PARyOpt.acquisition_functions.probability_improvement(mean: float, variance: float, curr_best: float = 0.0, _: float = 1.0) → float

	Probability of improvement of objective function     ‘A Tutorial on Bayesian Optimization of Expensive Cost Functions,     with Application to Active User Modeling and Hierarchical Reinforcement Learning’


	Parameters

	
	mean – mean of surrogate


	variance – variance of surrogate


	curr_best – current best evaluated point


	kappa – exploration - exploitation tradeoff parameter






	Returns

	probability of improvement










	
PARyOpt.acquisition_functions.upper_confidence_bound(mean: float, variance: float, curr_best: float = 0.0, kappa: float = 1.0) → float

	upper confidence bound of improvement: used in the case of maximization problems


	Parameters

	
	mean – mean of surrogate


	variance – variance of surrogate


	curr_best – current best evaluated point


	kappa – exploration - exploitation tradeoff parameter






	Returns

	upper confidence bound












PARyOpt.PARyOpt module




PARyOpt.utils module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.


	
PARyOpt.utils.cdf_normal(x: <built-in function array>, mean: <built-in function array> = 0.0, sigma_sq: <built-in function array> = 1.0) → float

	Cumulative distribution function of standard normal distribution


	Parameters

	
	x – scalar / location


	mean – mean of distribution


	sigma_sq – variance of distribution (sigma^2)






	Returns

	cdf of normal distribution










	
PARyOpt.utils.distance(x1: <built-in function array>, x2: <built-in function array>) → float

	returns the distance between two query points


	Parameters

	
	x1 – point 1


	x2 – point 2






	Returns

	euclidean distance between the two points










	
PARyOpt.utils.erf(x)

	error function of x: used in calculating cumulative distribution.
Unable to import from scipy, so writing our own function


	Parameters

	x – float



	Returns

	error function of x










	
PARyOpt.utils.lhs(n: int, samples: int = None, criterion: str = None, iterations: int = None)

	Generate a latin-hypercube design


	Parameters

	
	n – The number of factors to generate samples for


	samples – The number of samples to generate for each factor (Default: n)


	criterion – Allowable values are “center” or “c”, “maximin” or “m”, “centermaximin” or “cm”, and     “correlation” or “corr”. If no value given, the design is centermaximin.


	iterations – The number of iterations in the maximin and correlations algorithms (Default: 5).






	Return H

	An n-by-samples design matrix that has been normalized so factor values are uniformly      spaced between zero and one.



	Example

	




A 3-factor design (defaults to 3 samples):

>>> lhs(3)
array([[ 0.40069325,  0.08118402,  0.69763298],
       [ 0.19524568,  0.41383587,  0.29947106],
       [ 0.85341601,  0.75460699,  0.360024  ]])





A 4-factor design with 6 samples:

>>> lhs(4, samples=6)
array([[ 0.27226812,  0.02811327,  0.62792445,  0.91988196],
       [ 0.76945538,  0.43501682,  0.01107457,  0.09583358],
       [ 0.45702981,  0.76073773,  0.90245401,  0.18773015],
       [ 0.99342115,  0.85814198,  0.16996665,  0.65069309],
       [ 0.63092013,  0.22148567,  0.33616859,  0.36332478],
       [ 0.05276917,  0.5819198 ,  0.67194243,  0.78703262]])





A 2-factor design with 5 centered samples:

>>> lhs(2, samples=5, criterion='center')
array([[ 0.3,  0.5],
       [ 0.7,  0.9],
       [ 0.1,  0.3],
       [ 0.9,  0.1],
       [ 0.5,  0.7]])





A 3-factor design with 4 samples where the minimum distance between
all samples has been maximized:

>>> lhs(3, samples=4, criterion='maximin')
array([[ 0.02642564,  0.55576963,  0.50261649],
       [ 0.51606589,  0.88933259,  0.34040838],
       [ 0.98431735,  0.0380364 ,  0.01621717],
       [ 0.40414671,  0.33339132,  0.84845707]])





A 4-factor design with 5 samples where the samples are as uncorrelated
as possible (within 10 iterations):

>>> lhs(4, samples=5, criterion='correlate', iterations=10)










	
PARyOpt.utils.pdf_normal(x: <built-in function array>, mean: <built-in function array> = 0.0, sigma_sq: float = 1.0) → float

	Probability distribution function of standard normal distribution,
returns the pdf of a location from given mean with variance sigma_sq


	Parameters

	
	x – scalar/location


	mean – mean of distribution


	sigma_sq – variance of distribution (sigma^2)






	Returns

	pdf of normal distribution












Module contents

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.







          

      

      

    

  

    
      
          
            
  
PARyOpt.evaluators package


Submodules




PARyOpt.evaluators.async module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.


	
class PARyOpt.evaluators.async.AsyncFunctionEvaluator(required_fraction: float = 1.0, max_pending: int = 0)

	Bases: object

Abstract base class for long-running cost functions (e.g. external simulations).
Must be subclassed. Subclasses should fill in start() and check_for_results().
Automatically saves state as jobs are submitted.


	
check_for_result(x: <built-in function array>, data: Any) → Union[PARyOpt.evaluators.async.ValueNotReady, PARyOpt.evaluators.async.EvaluationFailed, PARyOpt.evaluators.async.EvaluateAgain, float]

	Returns the cost function evaluation at x, if the value is available. This method is only called after start.


	Parameters

	
	x – the point to evaluate the cost function at


	data – user data returned by start(x)






	Returns

	an instance of ValueNotReady if such, EvaluationFailed(reason), or the cost function value at x (float)










	
evaluate_population(xs: List[<built-in function array>], if_ready_xs: List[<built-in function array>] = []) → Tuple[List[Tuple[<built-in function array>, float]], List[<built-in function array>], List[<built-in function array>]]

	Evaluates a population of x values, encoded as a list of 1D numpy arrays.
Returns a tuple containing three lists:


	Completed values: [ (x1, y1), (x2, y2), … ]


	Pending values - evaluation is in progress, but not complete: [ x1, x2, … ]


	Failed  values - evaluation completed unsuccessfully: [ x1, x2, … ]




The union of completed, failed, and pending is equal to the union of xs and if_ready_xs.
The __init__ parameter required_fraction tunes how many completed/pending values are returned.


	Parameters

	
	xs – list of new points to check


	if_ready_xs – List of points to include in the return tuple if they available by the time we
evaluate the minimum required percentage of xs. These points do not count towards
the minimum required completed points.






	Returns

	( [(x, y), …] completed, [x, …] pending, [x, …] failed )










	
start(x: <built-in function array>) → Any

	Start a cost function evaluation at the given x location.
This method may return anything - the data will be passed on to check_for_result().
The only restriction is that the return value should be pickle-able to enable restart support.


	Parameters

	x – point to begin evaluation at



	Returns

	user data that will be fed into check_for_result()














	
class PARyOpt.evaluators.async.EvaluateAgain(reason: str)

	Bases: object

Indicates evaluation needs to be done again, due to some reason (for eg., during hardware failures)






	
class PARyOpt.evaluators.async.EvaluationFailed(reason: str)

	Bases: object

Indicates evaluation was not able to complete successfully, with an error value (i.e. an exception).






	
class PARyOpt.evaluators.async.ValueNotReady

	Bases: object

Indicates a function value is not ready yet.








PARyOpt.evaluators.async_local module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.


	
class PARyOpt.evaluators.async_local.AsyncLocalEvaluator(job_generator: Callable[[str, <built-in function array>], NoneType], run_cmd_generator: Callable[[str, <built-in function array>], Union[str, List[Any]]], parse_result: Callable[[str, <built-in function array>], float], jobs_dir: str = '/home/docs/checkouts/readthedocs.org/user_builds/paryopt/checkouts/stable/docs/opt_jobs', required_fraction=1.0, max_pending=4)

	Bases: PARyOpt.evaluators.async.AsyncFunctionEvaluator

Class for cost functions that evaluated by launching a long-running process on the local machine.


	Parameters

	
	job_generator – callable that sets up the run directory for a given x (by e.g. writing config files).     It will be passed two arguments: the job directory and the point to evaluate at (x).


	run_cmd_generator – callable that returns the command to run the job.     It will be passed two arguments: the job directory and the point to evaluate at (x).     If run_cmd_generator returns a string, the string will be run by the default shell (typically /bin/sh)     via Popen with shell=True. If run_cmd_generator returns a list, it will be passed to Popen.     In both cases, the CWD is set to the job directory.


	parse_result – callable that returns the cost function evaluated at x.     It will be passed two arguments: the job directory and the point to evaluate a t (x).    This will be called after the command returned by run_cmd_generator has terminated (gracefully or otherwise).     If the process did not terminate successfully or the result is otherwise unavailable, parse_result     should raise any exception. This will signal the optimization routine to not try this point again.


	jobs_dir – optional base directory to run jobs in - default is $PWD/opt_jobs.


	required_fraction – fraction of points which must complete before continuing to the next iteration see     AsyncEvaluator for more info and implementation


	max_pending – maximum simultaneous processes, defaults to multiprocessing.cpu_count() see AsyncEvaluator for     implementation









	
check_for_result(x: <built-in function array>, data: (<class 'str'>, <class 'int'>)) → Union[PARyOpt.evaluators.async.ValueNotReady, PARyOpt.evaluators.async.EvaluationFailed, PARyOpt.evaluators.async.EvaluateAgain, float]

	Checks the status of pid, in data, and calls parse_result if the job is done.


	Parameters

	
	x – location of function evaluation


	data – list of directory and pid






	Returns

	either ValueNotReady float or EvaluationFailed()










	
start(x: <built-in function array>) -> (<class 'str'>, <class 'int'>)

	Start a cost function evaluation at the given x location.
This method may return anything - the data will be passed on to check_for_result().
The only restriction is that the return value should be pickle-able to enable restart support.


	Parameters

	x – point to begin evaluation at



	Returns

	user data that will be fed into check_for_result()
















PARyOpt.evaluators.async_parse_result_local module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.


	
class PARyOpt.evaluators.async_parse_result_local.AsyncLocalParseResultEvaluator(parse_result: Callable[[str, <built-in function array>], float] = None, job_generator: Callable[[str, <built-in function array>], NoneType] = None, jobs_dir: str = '/home/docs/checkouts/readthedocs.org/user_builds/paryopt/checkouts/stable/docs/opt_jobs', wait_time: float = datetime.timedelta(0, 60), total_folders: int = 16, max_pending: int = 0, required_fraction: float = 1.0)

	Bases: PARyOpt.evaluators.async.AsyncFunctionEvaluator

Fills files in a set of folders and periodically checks if the external evaluator has finished     evaluation. Supports asynchronous evaluations. Only on a local machine.


	Variables

	
	folder_num – folder into which the location values are written into


	job_generator – callable that sets up the run directory for a given x (by e.g. writing config files).     It will be passed two arguments: the job directory and the point to evaluate at (x).


	jobs_dir – base directory where the jobs are written into


	parse_result – function to parse result from directory , if not specified, it will search in     jobs_dir/folder_<folder_num>/if_parse.txt and y.txt


	total_folders – total number of folders to write into


	wait_time – min time to wait before parsing the results folder









	
check_for_result(x: <built-in function array>, data: (<class 'str'>, <class 'datetime.datetime'>)) → Union[PARyOpt.evaluators.async.ValueNotReady, PARyOpt.evaluators.async.EvaluationFailed, PARyOpt.evaluators.async.EvaluateAgain, float]

	Function to check if a location has been evaluated or not (ValueNotReady). If it completes, categorize the         result as one of a float , EvaluationFailed or EvaluateAgain


	Parameters

	
	x – location to evaluate


	data – directory






	Returns

	Union[ValueNotReady, EvaluationFailed, EvaluateAgain, float]










	
start(x: <built-in function array>) -> (<class 'str'>, <class 'datetime.datetime'>)

	function to start a cost function evaluation (write to file in this case) given the location         of evaluation


	Parameters

	x – location of evaluation



	Returns

	folder name in which it was submitted
















PARyOpt.evaluators.async_sbatch module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.


	
class PARyOpt.evaluators.async_sbatch.AsyncSbatchEvaluator(host: PARyOpt.evaluators.connection.Host, job_generator: Callable[[str, <built-in function array>], NoneType], job_script: Union[str, Callable[[str, <built-in function array>], str]], lcl_parse_result: Callable[[str, str, PARyOpt.evaluators.connection.Connection, <built-in function array>], float] = None, remote_parse_result: Callable[[str, <built-in function array>], float] = None, lcl_jobs_dir: str = '/home/docs/checkouts/readthedocs.org/user_builds/paryopt/checkouts/stable/docs/opt_jobs', squeue_update_rate: datetime.timedelta = datetime.timedelta(0, 30), remote_jobs_dir: str = 'paryopt_jobs', required_fraction=1.0, max_pending=25)

	Bases: PARyOpt.evaluators.async.AsyncFunctionEvaluator

Class for cost functions that evaluated by launching a job on a remote machine running the SLURM job scheduler.


	Parameters

	
	host – Host object containing the credentials for the server to connect to


	job_generator – callable that sets up the run directory for a given x (by e.g. writing config files).     It will be passed two arguments: the job directory and the point to evaluate at (x).


	job_script – either a string (for a fixed job script), or a callable that returns the job script string.     In the latter case, job_script will be passed two arguments: the job directory and the point to evaluate at (x).


	remote_parse_result – callable that returns the cost function evaluated at x.     It will be passed two arguments: the job directory and the point to evaluate at (x).     This will be called after the command returned by run_cmd_generator has terminated (gracefully or otherwise).     If the process did not terminate successfully or the result is otherwise unavailable, parse_result     should raise any exception. This will signal the optimization routine to not try this point again.     This function will be executed on the remote host. This requires the remote host to have a matching version     of Python installed and the dill module.


	lcl_parse_result – callable that returns the cost function evaluated at X.     It is passed three arguments: the local job dir, remote job dir, the Connection object to the remote, and X.     It is executed on the local machine. This does not require the remote to have Python installed.


	lcl_jobs_dir – optional base directory to generate jobs in - default is $PWD/opt_jobs.


	remote_jobs_dir – optional base directory to upload jobs to - default is $HOME/paryopt_jobs.


	squeue_update_rate – minimum time between squeue calls. Lower for better job latency, higher to be more     polite


	required_fraction – fraction of points which must complete before continuing to the next iteration see     AsyncEvaluator for more info and implementation


	max_pending – maximum simultaneous queued jobs, defaults to 25, see AsyncEvaluator for implementation









	
check_for_result(x: <built-in function array>, data: (<class 'str'>, <class 'str'>, <class 'int'>, <class 'datetime.datetime'>)) → Union[PARyOpt.evaluators.async.ValueNotReady, PARyOpt.evaluators.async.EvaluateAgain, PARyOpt.evaluators.async.EvaluationFailed, float]

	checks for result if the jobid is complete and ping time is after update rate


	Parameters

	
	x – location of evaluation


	data – data related to the location. Typically this is directory information, job id and submit time






	Returns

	one of ValueNotReady, EvaluateAgain, EvaluationFailed or float










	
squeue()

	




	
start(x: <built-in function array>) -> (<class 'str'>, <class 'str'>, <class 'int'>, <class 'datetime.datetime'>)

	Generate job directory on local machine, fill in data related to the job like directory, job id and submit time










	
PARyOpt.evaluators.async_sbatch.VALUE_FROM_FILE(filename)

	






PARyOpt.evaluators.connection module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.


	
class PARyOpt.evaluators.connection.Connection

	Bases: object


	
call_on_remote(remote_func, *args, remote_cwd: Union[str, NoneType] = None)

	Call a function created on this system on a remote system with args.
This is done by pickling it with dill, SFTPing it to a file on the remote, executing a Python script on the
remote that un-dills the file, calls the function, dills the result and prints it to stdout.
Finally, stdout is un-dilled on the local machine to give the return value.
This requires the remote to have a matching Python version.


	Parameters

	
	remote_func – function to call


	args – any arguments to call the function with


	remote_cwd – directory on the remote to call the script from (must have write access to this directory)






	Returns

	value returned by f










	
connect(host: PARyOpt.evaluators.connection.Host)

	




	
exec_command(cmd: str, cwd=None, check_exitcode=True, encoding='utf-8') -> (<class 'str'>, <class 'str'>, <class 'int'>)

	Executes cmd in a new shell session on the remote host.


	Parameters

	
	cmd – command to execute


	cwd – directory to execute the command in - performed by prepending ‘cd [cwd] && ‘ to cmd


	check_exitcode – if true, instead of returning the exit code of cmd as part of the return tuple, verify
that the return code is zero. If it is not, an exception is raised with the contents of stderr.


	encoding – encoding to decode stdout/stderr with. Defaults to utf-8.






	Returns

	if check_exitcode is True, (stdout: str, stderr: str). If it is False, (stdout, stderr, rc: int).
stdout and stderr are decoded according to encoding.










	
get_dir(remote_dir: str, local_dir: str) → None

	Download directory from remote directory to local directory






	
get_file(remote_path: str, local_path: str) → None

	Downloads a file from the remote, same as paramiko.SFTPClient.get






	
mkdirs(remote_dir) → None

	Creates remote_dir recursively as a directory on the remote, creating any necessaries parent directories
along the way. Similar to mkdir -p, except it doesn’t error if the directory already exists.






	
put_dir(local_path: str, remote_path: str) → None

	Compresses local_path into a .tar.gz archive, uploads it to the remote, extracts it into remote_path,
and finally deletes the temporary tar archive. Assumes the remote has the ‘tar’ utility available.






	
put_file(local_path: str, remote_path: str) → None

	Uploads a local file to the remote host, same as paramiko.SFTPClient.put






	
remote_python() → str

	Returns a string that, when invoked as a command on the remote, will execute a Python that:


	Matches the version that this script was invoked with (i.e. matching sys.version_info)


	Has the ‘dill’ module installed




The remote Python is discovered by trial and error using common Python names.
The search is performed once and then cached.
If no such Python is available, this will return None.






	
sftp() → paramiko.sftp_client.SFTPClient

	








	
class PARyOpt.evaluators.connection.Host(username, hostname, port=22)

	Bases: object


	
get_interactive(title: str, instructions: str, prompts: List[str]) → List[str]

	Handles the ssh ‘interactive’ authentication mode (user answers a series of prompts).


	Parameters

	
	title – title of the window


	instructions – instructions, to be shown before any prompts


	prompts – the list of prompts






	Returns

	the list of responses (in the same order as the prompts)










	
get_keys()

	
	Returns

	a list of public/private keys to try authenticating with










	
get_password()

	
	Returns

	the password for the host
















Module contents

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.


	
class PARyOpt.evaluators.FunctionEvaluator(func: Callable[[<built-in function array>], float])

	Bases: object

The simplest function evaluator - evaluates a Python function for each point.


	Parameters

	func – cost function to evaluate at each x






	
evaluate_population(xs: List[<built-in function array>], old_xs: List[<built-in function array>] = []) → Tuple[List[Tuple[<built-in function array>, float]], List[<built-in function array>], List[<built-in function array>]]

	













          

      

      

    

  

    
      
          
            
  
PARyOpt.kernel package


Submodules




PARyOpt.kernel.kernel_function module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.


	
class PARyOpt.kernel.kernel_function.KernelFunction

	Bases: object

Attributes:


	Variables

	
	theta – Kernel parameters. Can be None, a scalar, or a vector. Should be initialized to the appropriate     type/len during initialization.


	theta0 – Scaling factor









	
derivative(x1: <built-in function array>, x2: <built-in function array>) → <built-in function array>

	Evaluate the derivative of the kernel


	Parameters

	
	x1 – location 1


	x2 – location 2






	Returns

	










	
eval(x1: <built-in function array>, x2: <built-in function array>) → float

	Evaluate the kernel function


	Parameters

	
	x1 – location 1


	x2 – location 2






	Returns

	










	
theta = None

	




	
theta0 = 1.0

	










PARyOpt.kernel.matern module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.


	
class PARyOpt.kernel.matern.Matern32

	Bases: PARyOpt.kernel.kernel_function.KernelFunction

3/2 matern function rbf


	
derivative(x1: <built-in function array>, x2: <built-in function array>) → <built-in function array>

	Evaluate the derivative of the kernel


	Parameters

	
	x1 – location 1


	x2 – location 2






	Returns

	










	
eval(x1: <built-in function array>, x2: <built-in function array>) → float

	Evaluate the kernel function


	Parameters

	
	x1 – location 1


	x2 – location 2






	Returns

	










	
theta = 1.0

	








	
class PARyOpt.kernel.matern.Matern52

	Bases: PARyOpt.kernel.kernel_function.KernelFunction

5/2 matern function rbf


	
derivative(x1: <built-in function array>, x2: <built-in function array>) → <built-in function array>

	Evaluate the derivative of the kernel


	Parameters

	
	x1 – location 1


	x2 – location 2






	Returns

	










	
eval(x1: <built-in function array>, x2: <built-in function array>) → float

	Evaluate the kernel function


	Parameters

	
	x1 – location 1


	x2 – location 2






	Returns

	










	
theta = 1.0

	










PARyOpt.kernel.squared_exponential module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.


	
class PARyOpt.kernel.squared_exponential.SquaredExponential

	Bases: PARyOpt.kernel.kernel_function.KernelFunction

Squared exponential rbf


	
derivative(x1: <built-in function array>, x2: <built-in function array>) → <built-in function array>

	Evaluate the derivative of the kernel


	Parameters

	
	x1 – location 1


	x2 – location 2






	Returns

	










	
eval(x1: <built-in function array>, x2: <built-in function array>) → float

	Evaluate the kernel function


	Parameters

	
	x1 – location 1


	x2 – location 2






	Returns

	










	
theta = 1.0

	










Module contents

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.







          

      

      

    

  

    
      
          
            
  
Examples

This provides a demonstration of the exhaustive functionality of PARyOpt. These are very intricately connected to
the examples on BitBucket, so the user is suggested to go through them simultaneously. The examples are structured as
follows:


Description of Examples





	Example #

	Description





	Example 0

Getting Started


	A dive into setting up the optimization routine.



	Example 1

Custom functions for surrogate construction


	Using the same problem as example 0, the modularity of the
framework is demonstrated. All the functions that can be customized are shown.



	Example 2

Restart from previous state


	Explains the restart capabilities of the framework and how
one can use in case of (hardware/resource) failure.



	Example 3

Local asynchronous evaluator


	Asynchronocity is introduced and a local asynchronous implementation
of example 0 is shown. This implementation can be easily extended to an asynchronous
remote evaluator.



	Example 4

Kriging


	Explains the kriging functionality of the framework and how data
can be assimilated to perform kriging







Tutorials


	Getting Started
	Initialization

	Update

	Hyper parameter optimization

	Surrogate query

	Logging

	Saving data





	Custom functions for surrogate construction
	Initialization strategy

	Kernel functions (Class)

	Acquisition functions

	Acquisition optimizer





	Restart from previous state
	Restart

	Intra-iteration restart





	Local asynchronous evaluator
	Out-of-script cost function

	Folder generator

	Run command

	Result parser

	Asynchronous optimization





	Kriging









          

      

      

    

  

    
      
          
            
  
Getting Started

This example shows how one gets started with the optimization software.
One is expected to see through example_0.py for a better understanding.

Just like any optimization, we should have information about the following:


	dimensionality of the problem – n_dim


	cost function that has to be minimized – function


	bounds on the variables   – l_bound, u_bound




Some more parameters for Bayesian Optimization


	number of initial evaluations for constructing the prior –n_init


	type of kernel function – kern_function


	number of evaluations per iteration – n_opt


	platform of evaluation - local computer / remote computer


	parallel / serial evaluations – cost_function


	asynchronocity of evaluations – cost_function


	acquisition function (list) – acq_func


	parallelization of acquisition function – kappa_strategy








The kappa_strategy defines exploration vs exploitation of the optimizer. Those with a large kappa value
will explore and a small kappa value will exploit.

In this example, we shall solve a simple parabolic cost function, on a local machine with no parallelization. The evaluations
will, therefore, be fully synchronous. As part of the example, we shall do an exploration dominated search in the
optimization. The parameters that will be used are as follows:

from PARyOpt.evaluators import FunctionEvaluator
import numpy as np
from PARyOpt import BayesOpt

n_dim = 1
l_bound = np.asarray([-12.])
u_bound = np.asarray([12.])

n_init = 2
kern_function = 'sqr_exp'       # squared exponential
acq_func = 'LCB'                # lower confidence bound
def my_cost_function(x: np.array) -> float:
        y = np.sum((x-2.5) ** 2 + 5)
        return float(y)
# instantiate an evaluator that evaluates serially on the local machine
evaluator = FunctionEvaluator(my_cost_function)
def my_kappa(curr_iter: int) -> float:
    return 1000.0           # large value for exploration






Initialization

Having defined these parameters, we shall now initialize the optimizer:

b_opt = BayesOpt(cost_function=evaluator,
                 l_bound=l_bound, u_bound=u_bound, n_dim=n_dim,
                 n_init=2,
                 kern_function='sqr_exp',
                 acq_func='LCB',
                 n_opt=1,                           # default setting
                 kappa_strategy=my_kappa,
                 if_restart=False)





The stage is now set for optimization to be performed. Since this package does not provide any standard termination criteria,
the user is expected to design a termination based on the nature of the problem. In this example, we shall look at
a very simple termination criterion of number of iterations.

max_iter = 10








Update

The user shall manually update the optimization every iteration. This provides ways to post-process user required metrics
every iteration, as well as do a regular hyper-parameter optimization for optimized surrogate.

for curr_iter in range(max_iter):
    b_opt.update_iter()








Hyper parameter optimization

An implementation of the standard hyper parameter optimization is done in estimate_best_kernel_parameters().
This minimizes a maximum likelihood estimate of the constructed surrogate and eventually sets the optimal kernel
length scale. It can be invoked by calling:

theta_min = 0.01
theta_max = 50.
b_opt.estimate_best_kernel_parameters(theta_bounds=[[theta_min, theta_max]])





Hyper parameter optimization need not be performed every iteration as the surrogate may not change much with the
addition of a single data point. Hence its call can be periodic based on the iteration number.




Surrogate query

Having constructed the surrogate, one may need to query it for several purposes, including visualization, post-processing
and termination criteria. This functionality is provided through the evaluate_surrogate_at() function. It
returns the value of the mean and variance of the surrogate at the queried location.

location_to_query = np.asarray([0.5])
mean, variance = b_opt.evaluate_surrogate_at(location_to_query)








Logging

PARyOpt uses the python logging [https://docs.python.org/3/library/logging.html] module for logging. The user has to
instantiate the logger in the main code. If the logger is not initiated, the logs will be streamed to stdout. An
example of using the logger is also in the above example:

import logging, time

logger = logging.getLogger()
logger.setLevel(logging.INFO)  # either NOTSET, INFO, DEBUG, WARNING, ERROR, CRITICAL -- different levels of log
log_file_name = 'example0_{}.log'.format(time.strftime("%Y.%m.%d-%H%M%S"))
fh = logging.FileHandler(log_file_name, mode='a')
# logging format
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
logger.addHandler(fh)








Saving data

The framework provides multiple ways to save data, particularly with ready methods to export in .csv format. It can be
done be calling:

b_opt.export_csv('my_data.csv')





Alternately, data can be custom exported, as get methods exist to get the population and the respective function values.

total_population, function_values = b_opt.get_total_population()





The next example shows how to custom change the various functions used in the optimization method.







          

      

      

    

  

    
      
          
            
  
Custom functions for surrogate construction

This example discusses the modularity provided by the framework to change various optimizer and surrogate related
methods. More specifically, we look at changing the following accessory functions:


	Initialization strategy


	Kernel functions (Class)


	Acquisition functions


	Acquisition optimizer




Through this tutorial, we shall not solve any new problem. However, explanations will be provided to how can one add
custom definitions to these standard methods. We shall use an external implementation of the standard methods for the
user to easily compare with Getting Started. While the example shows the usage of all of these at once, the user is
encouraged to understand the effect of changing each of these accessory functions separately:


Initialization strategy

Several situations arise when the user has to specify his own initialization strategies. Some of these include:


	Constraints, such as equality, inequality and PDE based constraints. In such situations, all locations determined
by the upper and lower bounds may not be feasible. PARyOpt requires all the initial evaluation points to be successful
evaluations, hence a general latin hypercube sampling may not work in all cases.


	Biased sampling of search domain. There could be situations where the user knows strategic locations and thus can
help PARyOpt to sample in those locations right from the beginning


	User defined sampling strategy. The user may want a completely different sampling strategy which has a better
coverage of the domain for that specific optimization problem.




In order to specify custom initialization strategy, the user should define a function with the following signature:

def my_init_strategy(n_dim: int, n_init: int, l_bound: np.array, u_bound: np.array) -> List[np.array]





and then pass it during initialization to the parameter init_strategy=my_init_strategy.




Kernel functions (Class)

Kernel function embeds most of the information about the continuity of the underlying function. Thus, it is one of the
critical parameters to be selected by the user. For example, Matern class of kernel functions have only finite
differentiability while the squared exponential kernel function is infinitely differentiable. Some other situations
where the user may want to change the kernel function are :


	Underlying function continuity and differentiability, as discussed above.


	Prior information about periodicity of the underlying function. In such situations, periodicity can be embedded
into the kernel function. This can drastically improve the number of function evaluations. One such example of a
periodic kernel function is:





\[k_{periodic}(x_1, x_2) = \theta_0 exp(-2 sin(\frac{\pi}{p} \frac{||x_1 - x_2||}{l})^2)\]

where \(p\) is the periodicity interval and \(l\) is the length scale of the kernel.


	Anisotropic kernels may be used when the function behaviour is different across different optimization parameters.
For example, if the function varies logarithmically in one parameter and linearly in another parameter




To specify custom kernel functions, the user has to derive the base kernel class. An example to specify the standard
Matern 3/2 function by the user is as follows:

class MyKernelFunction(KernelFunction):
 """
 user customized kernel function
 """

 theta = 1.0

 def eval(self, x1: np.array, x2: np.array) -> float:
     """
     actual kernel function
     :param x1:
     :param x2:
     :return:
     """
     x1 = np.divide(x1, self.theta)
     x2 = np.divide(x2, self.theta)
     dist = utils.distance(x1, x2)
     rval = np.sqrt(3.0) * dist
     return self.theta0 * (1+rval) * np.exp(-rval)

 def derivative(self, x1: np.array, x2: np.array) -> np.array:
     """
     derivative of kernel function
     currently not useful, so we will not implement anything here
     :param x1:
     :param x2:
     :return:
     """
     pass





This derived class requires defining the eval() and derivative() methods of the class. The parameter
theta should contain all the hyper-parameters, for ex. length scale, related to the supplied kernel. This will
be used by PARyOpt during hyper-parameter optimization. This kernel class can be passed to the constructor through
the parameter kern_function=MyKernelFunction().




Acquisition functions

Acquisition function define informative regions of the surrogate. Since the software is designed for minimization, areas
of high information should have small acquisition values. In normal circumstances, the user should not need to change
this. However, if the user wants implementing safety constraints and biased informativeness, it can be be done
by passing a user defined function, with the following signature, to the constructor as
acq_func=my_acquisition_function.

def my_acquisition_function(mean: float, variance: float, curr_best: float = 0., kappa: float = 1.) -> float:








Acquisition optimizer

Bayesian optimization proceeds by evaluating locations with maximum information content. Hence, it requires finding the
optimum (minimum in PARyOpt) of the acquisition function (cheap to evaluate). While the core software comes with a
standard Powell algorithm, the user may quite often want to change this for a better global optimum. Some of the
reasons include:


	Dimensionality of optimization could impose restrictions on the type of optimizer used


	Heuristic optimization can be an alternative for multi-modal functions. Since evaluating the acquisition is fast,
these optimizers will also be efficient.


	Robust in-house optimizers may be available with research groups tailored for specific problems.




The process of adding user-defined acquisition optimizer is very similar to defining custom acquisition function. The
function signature is :

def my_acq_optimizer(func: Callable[[np.array], float], x0: np.array, l_bound: np.array, u_bound: np.array) -> np.array:





which is passed to the constructor as acq_func_optimizer=my_acq_optimizer.







          

      

      

    

  

    
      
          
            
  
Restart from previous state

This example shows how the user can deal with optimization failures, either due to hardware failure or due to wrong
selection of accessory functions. This will also be useful in cases of changing optimization platform but resuming the
same optimization task.

In order to create an optimization state, we shall first run a standard optimization problem for a certain number of
iterations. This can be done either by running example 0(Getting Started), or by re-doing the whole procedure. For the benefit
of the user, we shall take the latter way.


Restart

In example 1, we have seen that our custom initialization is not the best compared to the default latin hypercube
sampling. In fact, such an example provides the best motivation for a restart. Hence, in this example, we provide
a custom initialization method, the same as in example 1 (Custom functions for surrogate construction). Once the optimization is done for 10
iterations, we shall create another instance of BayesOpt that starts from this existing optimization state.

restarted_bo = BayesOpt(cost_function=evaluator,
                        l_bound=l_bound, u_bound=u_bound, n_dim=n_dim,
                        n_init=2,
                        kern_function='sqr_exp',
                        acq_func='LCB',
                        kappa_strategy=my_kappa,
                        if_restart=True, restart_filename='opt_state.dat')





Note that the restarted optimization need not have the same accessory functions, like kernel, acquisition and kappa
strategy. By enabling if_restart and providing the restart_filename, the framework re-creates the optimization
state from which the user can continue the optimization, for example,

restarted_bo.update_iter(5)





will update 5 iterations at once. This API helps to reduce redundant loops in the user code.




Intra-iteration restart

It has to be noted here that the evaluator also has an inbuilt check-pointing per iteration, so that hard interrupts
such as the KeyboardInterrupt can also be handled for restart. The user need not do any extra changes to enable
this intra-iteration restart functionality.







          

      

      

    

  

    
      
          
            
  
Local asynchronous evaluator

In this example, we shall see how to use the local async evaluator. This is particularly useful when the cost function
takes a long time to evaluate, and sometimes with uncertain evaluation times. In such situations, a better way to
parallelize evaluations is to run as individual jobs on the evaluation platform (local machine) and keep track of
the completion of the jobs through the process id in the process table.
This approach naturally supports asynchronous bayesian update, i.e., update the iteration without completing all the
jobs per iteration. The un-assimilated jobs will be used for the update in the subsequent iterations.

To achieve this, the framework creates individual job directories for each cost function evaluation. It also provides
an interface for the user to set up these directories for a self-contained evaluation. The cost function needs
to write out a file with the result(cost value) which will later be parsed by the framework upon execution completion.
For this, the user needs to provide functions that


	generate necessary files in the folder for function evaluation


	provide the command for executing the cost function, and


	parse the result file generated by the cost function




In the rest of the document, we shall see how to set up a sample cost function, a folder generator, run command and
result parser. Once again, we shall use the same parabolic cost function for easy understanding, but in 2 dimensions.


Out-of-script cost function

The first step to performing out-of-script evaluation is to re-define the cost function. While a generic cost function
in an optimization framework is like a python function that returns the cost function value, out-of-script functions
need to be defined differently. Firstly, they do not have any defined arguments and secondly, such out-of-script cost
function also cannot directly pass the function value to the optimization framework. While there are several ways to
overcome these difficulties, this framework requires the following template to be followed:


	Input: the cost function can either take inline arguments or read from file


	Output: the cost function should write to a standard file




For example, the following code evaluates the parabola in 2 dimensions and writes to file result.txt. Location of
evaluation are passed as inline arguments.

import sys
import numpy as np
import time
import examples.examples_all_functions as exf

# read the command line arguments into an array
xs = np.asarray([float(x) for x in sys.argv[1:]])

# evaluate the cost, i.e. the parabola
cost = exf.parabolic_cost_function(x=xs)

# In order to demonstrate uncertain evaluation times, we shall use a random sleep in each cost function.
# In this case, each function evaluation can take between 0-10 sec
time.sleep(np.random.random() * 10.)

# Write into a result file. Note that this script is evaluated in its respective folder and so
# the result.txt file will be in the generated folder and not the home directory of running example4.py
with open('result.txt', 'w') as f:
    f.write(str(cost) + '\n')








Folder generator

Many common simulations require not just the location of evaluation but also several other systems to be in place for
proper working. For example, many finite element simulations require a geometry mesh file that represent the domain of
simulation. The optimizer calls this function, job_generator() with two arguments – the folder of evaluation
(more to come on this) and the location x at which the cost function is executed.

def folder_generator(directory, x) -> None:
    """
    prepares a given folder for performing the simulations. The cost function (out-of-script) will be executed
    in this directory for location x. Typically this involves writing a config file, generating/copying meshes and

    In our example, we are running a simple case and so does not require any files to be filled. We shall pass the
    location of cost function as a command line argument
    """
    with open(os.path.join(directory, 'config.txt'), 'w') as f:
        pass  # write file
    pass








Run command

Just like a folder of files for execution, the user may need to provide command line arguments to the cost function
during execution. To achieve this, the optimizer calls the function run_cmd_generator() with the folder of evaluation and
location x at which the cost function has to be evaluated. Thus it can allow change of run-time arguments based on
the evaluation point.

def run_cmd(directory, x) -> List[Any]:
    """
    Command to run on local machine to get the value of cost function at x, in directory.
    In this example, we shall run the script example3_evaluator.py with the location as an argument.
    """
    eval_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'example3_evaluator.py')
    return [sys.executable, eval_path] + list(x[:])








Result parser

Once the cost function writes the cost value into a file, the result parser is supposed to read and return that cost
value to the optimizer. Some local post processing operations can go into this function. Care should be taken to return
only float values, otherwise it can lead to Type inconsistencies in the optimization routine. The function signature
is the same as that for run_cmd_generator() and job_generator()

def result_parser(directory, x) -> float:
    """
    Parses the result from a file and returns the cost function.
    The file is written be the actual cost function. One can also do post processing in this function and return the
    subsequent value. Based on the construct of our cost function example3_evaluator.py, the generated result.txt
    will be in this 'directory'
    """
    with open(os.path.join(directory, 'result.txt'), 'r') as f:
        return float(f.readline())








Asynchronous optimization

Once the above functions are created, the only new procedure to use asynchronous evaluations is setting up the evaluator.
This requires passing in the the three functions, namely, job_generator(), run_cmd_generator() and
parse_result(). Along with these, it is optional to pass in the location of function evaluations.
The evaluator creates separate folders in these directory (relative path) for each cost function evaluation.
Each cost function call is assigned a (randomly named) directory within this specified jobs_dir where the
run_cmd (from run_cmd_generator()) is called.

evaluator = AsyncLocalEvaluator(job_generator=folder_generator,
                                 run_cmd_generator=run_cmd,
                                 parse_result=result_parser,
                                 required_fraction=0.5, jobs_dir=os.path.join(os.getcwd(), 'temp/opt_jobs'))





Since we are using multiple optima per iteration, we can take advantage of it deploy simultaneous exploration and
exploitation in the acquisition function. For example, the following code creates a list of two functions – one
exploratory (kappa = 1000) and another exploitatory (kappa = 0.1). This list is then passed to the optimizer, like in
the previous examples.

n_opt = 2
my_kappa_funcs = []
my_kappa_funcs.append(lambda iter_num: 1000)            # exploration
my_kappa_funcs.append(lambda iter_num: 0.1)             # exploitation





One can get more crafty in designing these kappa strategies and create a so-called annealing kappa, one that starts with
a large value and eventually reduces to a small value, at different rates.

for j in range(n_opt):
    my_kappa_funcs.append(lambda curr_iter_num, freq=10.*(j*j+2), t_const=0.8/(1. + j):
                          user_defined_kappa(curr_iter_num, freq=freq, t_const=t_const))





The remaining part of the optimization remains the same, except for the initialization of BayesOpt object.

b_opt = BayesOpt(cost_function=evaluator,
                 n_dim=n_dim, n_opt=n_opt, n_init=2,
                 u_bound=u_bound, l_bound=l_bound,
                 kern_function='matern_52',
                 acq_func='LCB', kappa_strategy=my_kappa_funcs,
                 if_restart=False)

for curr_iter in range(iter_max):
    b_opt.update_iter()
    if not curr_iter % 2:
        b_opt.estimate_best_kernel_parameters(theta_bounds=[[0.01, 10]])
    exf.visualize_fit(b_opt)











          

      

      

    

  

    
      
          
            
  
Kriging

Kriging or Gaussian process regression is a method of interpolation for which the interpolated values are modeled by a
Gaussian process governed by prior covariances. In this example, we show how PARyOpt can be used to generate response
surfaces using available data.
As with the previous examples, we shall use the standard parabola as the underlying function to be approximated. There
are several ways to use PARyOpt for Kriging, one of which is shown here. This is possibly the easiest and cleanest way
to perform Kriging using PARyOpt.

Data generation: Since the underlying function is known, we shall generate data by invoking this function
at some random locations within the bounds and storing them in an external file. This is achieved through the
following snippet:

def create_data_csv(function: Callable, filename: str, l_bound: np.array, u_bound: np.array) -> None:
 # generate some random locations -- 7
 normalized_population = np.random.ranf((7, ))
 real_population = l_bound + normalized_population * (u_bound - l_bound)
 real_population = [np.asarray([p]) for p in real_population]
 # evaluate the values
 real_functions = [float(function(p)) for p in real_population]

 # write into file
 with open(filename, 'w') as f:
     writer = csv.writer(f, delimiter=',')
     writer.writerow('x y')
     for x, y in zip(real_population, real_functions):
         writer.writerow(list(x) + [y])





Data assimilation : PARyOpt provides an add_point() to add external data manually. The user has to supply
the x location and any available y values to this method to add data to the BayesOpt instance.
An example usage of add_point() using the above generated data can be:

def load_from_csv(b_opt: BayesOpt, filename: str) -> BayesOpt:
 """
 load data from csv file and add to PARyOpt
 """
 with open(filename, 'r') as csvfile:
     csv_file_lines = csv.reader(csvfile, delimiter=',')
     for row_num, row in enumerate(csv_file_lines):
         if row_num == 0:
             # skipping the header
             pass
         else:
             b_opt.add_point(x=np.asarray([float(row[0])]), y=float(row[-1]),
                             if_check_nearness=True)
 b_opt.update_surrogate()

 return b_opt





Note that the user has to manually invoke update_surrogate(). This is currently for efficiency purposes and hope
to be replaced in the upcoming versions.

Finally, since the user wants to add data manually and does not want the standard initialization required for bayesian
optimization, we provide a switch do_init to turn off the initialization. Since there is no cost function to
be optimized, the evaluator should be passed in an empty function for evaluation.

# dummy evaluators:
evaluator = FunctionEvaluator(lambda x: 0.0)

krig = BayesOpt(cost_function=evaluator,
                l_bound=l_bound, u_bound=u_bound, n_dim=1,
                n_init=0, do_init=False,        # ensures that initialization is not done.
                kern_function='sqr_exp',
                acq_func='LCB',
                kappa_strategy=lambda curr_iter: 1000,
                if_restart=False)
krig = load_from_csv(krig, data_filename)
krig.estimate_best_kernel_parameters(theta_bounds=[[0.001, 10.0]])





Note that since we are not providing any actual cost function here, update_iter() does nothing useful. In case
the user is looking for an instantaneous Kriging model, i.e., creating a Kriging surface and updating it, the actual
cost function should be provided. Just like the previous examples, one may use evaluator from example-3_
and do Kriging similar to optimization.

Now that the surrogate is created and hyper-parameters optimized, one can start querying it using
evaluate_surrogate_at()

location = np.array([1.0])
mean, variance = krig.evaluate_surrogate_at(location)
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conf module

Copyright (c) 2018 Baskar Ganapathysubramanian, Balaji Sesha Sarath Pokuri

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.


	
conf.run_apidoc(_)

	




	
conf.setup(app)
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